分析 (1)首先根據(jù)角平分線的性質(zhì)可得∠DAC=2∠DAE,再由AB=AC可得∠B=∠ACB,然后根據(jù)內(nèi)角與外角的關(guān)系可得∠DAC=∠B+∠ACB=2∠B,進而可證明∠DAE=∠B,再根據(jù)同位角相等,兩直線平行可得AE∥BC,根據(jù)相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)相似三角形的性質(zhì),得到比例式,代入數(shù)據(jù)即可得到結(jié)論.
解答 (1)證明:∵AE是∠CAD的平分線,
∴∠DAC=2∠DAE,
∵AB=AC,
∴∠B=∠ACB,
又∵∠DAC=∠B+∠ACB=2∠B,
∴∠DAE=∠B,
∴AE∥BC,
∴△AEF∽△CBF;
(2)∵AB=6,
∴AC=AB=6,
∵AF=2,
∴CF=4,
∵△AEF∽△CBF,
∴$\frac{AF}{CF}=\frac{EF}{BF}$,
即$\frac{2}{4}=\frac{EF}{5}$,
∴EF=$\frac{5}{2}$.
點評 本題考查了平行線的判定,相似三角形的判定和性質(zhì),熟練掌握相似三角形的判定定理是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | b-a | B. | a-b | C. | -b-a | D. | a+b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com