(2009•江津區(qū))如圖,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60°.
(1)求證:AB⊥AC;
(2)若DC=6,求梯形ABCD的面積.

【答案】分析:(1)根據(jù)等腰梯形在同一底上的兩個角相等和角平分線的定義,可以求得∠ACB=30°,從而證明結(jié)論;
(2)過點(diǎn)A作AE⊥BC于E,根據(jù)30°所對的直角邊是斜邊的一半,求得BC=2AB=12,BE=3,再根據(jù)勾股定理求得AE的長,進(jìn)而求得梯形的面積.
解答:(1)證明:∵AD∥BC,AB=DC,∠B=60°,
∴∠DCB=∠B=60°,∠DAC=∠ACB.
又∵AD=DC,
∴∠DAC=∠DCA,
∴∠DCA=∠ACB=60°÷2=30°,
∴∠B+∠ACB=90°,
∴AB⊥AC.

(2)解:過點(diǎn)A作AE⊥BC于E,
∵∠B=60°,
∴∠BAE=30°,
又∵AB=DC=6,
∴BE=3,
∴AE===3,
∵∠ACB=30°,AB⊥AC,
∴BC=2AB=12,
∴S=(AD+BC)•AE=(6+12)•3=27
點(diǎn)評:此題主要是能夠構(gòu)造30°的直角三角形進(jìn)行計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2009•江津區(qū))如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),點(diǎn)B(-2,n),一次函數(shù)圖象與y軸的交點(diǎn)為C.
(1)求一次函數(shù)解析式;
(2)求C點(diǎn)的坐標(biāo);
(3)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省寧波市鄞州區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•江津區(qū))如圖,拋物線y=-x2+bx+c與x軸交于A(1,0),B(-3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省宜昌市枝江市雅畈中學(xué)九年級中考數(shù)學(xué)強(qiáng)化訓(xùn)練專題1 函數(shù)、一次函數(shù)與反比例函數(shù)(解析版) 題型:解答題

(2009•江津區(qū))如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),點(diǎn)B(-2,n),一次函數(shù)圖象與y軸的交點(diǎn)為C.
(1)求一次函數(shù)解析式;
(2)求C點(diǎn)的坐標(biāo);
(3)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年重慶市江津區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•江津區(qū))如圖,拋物線y=-x2+bx+c與x軸交于A(1,0),B(-3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年重慶市江津區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•江津區(qū))如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),點(diǎn)B(-2,n),一次函數(shù)圖象與y軸的交點(diǎn)為C.
(1)求一次函數(shù)解析式;
(2)求C點(diǎn)的坐標(biāo);
(3)求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊答案