精英家教網 > 初中數學 > 題目詳情

【題目】正方形EFGH的頂點在邊長為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則yx的函數關系式為______

【答案】y=2x2﹣6x+9

【解析】

AAS證明DHE≌△AEF,得出DE=AF=x,DH=AE=3-x,再根據勾股定理,求出EH2,即可得到yx之間的函數關系式.

如圖所示:

∵四邊形ABCD是邊長為3的正方形,

∴∠A=D=90°,AD=3.

∴∠1+2=90°,

∵四邊形EFGH為正方形,

∴∠HEF=90°,EH=EF.

∴∠1+3=90°

∴∠2=3,

AHEBEF

,

∴△DHE≌△AEF(AAS),

DE=AF=x,DH=AE=3-x,

RtAHE中,由勾股定理得:

EH2=DE2+DH2=x2+(3-x)2=2x2-6x+9;

y=2x2-6x+9(0<x<3),

故答案為:y=2x2-6x+9.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c a≠0)的圖象如圖所示,則①abc>0,②b2-4ac>0,③2a+b>0,④a+b+c<0,這四個式子中正確的個數有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx經過OAB的三個頂點,其中點A(1,),點B(3,﹣),O為坐標原點.

(1)求這條拋物線所對應的函數表達式;

(2)若P(4,m),Qt,n)為該拋物線上的兩點,且nm,求t的取值范圍;

(3)若C為線段AB上的一個動點,當點A,點B到直線OC的距離之和最大時,求∠BOC的大小及點C的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,lAlB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.

(1)B出發(fā)時與A相距_____千米.

(2)走了一段路后,自行車發(fā)生故障進行修理,所用的時間是____小時.

(3)B出發(fā)后_____小時與A相遇.

(4)求出A行走的路程S與時間t的函數關系式.(寫出計算過程)

(5)請通過計算說明:若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,何時與A相遇?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A(0,3),C(3,0).

(1)求拋物線的關系式和tanBAC的值;

(2)P為拋物線上一動點,連接PA,過點PPQOAy軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與ACB相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由;

(3)在AB上找一點M,使得OM+DM的值最小,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店購進甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴10元,用350元購買甲種商品的件數恰好與用300元購買乙種商品的件數相同.

1)求甲、乙兩種商品每件的價格各是多少元?

2)計劃購買這兩種商品共50件,且投入的經費不超過3200元,那么最多購買多少件甲種商品?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標分別為A(﹣2,4),B(﹣4,1),C(0,1).

(1)畫出與△ABC關于x軸對稱的△A1B1C1,并寫出點C1的坐標;

(2)畫出以C1為旋轉中心,將△A1B1C1逆時針旋轉90°后的△A2B2C2;

(3)尺規(guī)作圖:連接A1A2,在C1A2邊上求作一點P,使得點PA1A2的距離等于PC1的長(保留作圖痕跡,不寫作法);

(4)請直接寫出∠C1A1P的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,晚上小亮在廣場上乘涼,圖中線段AB表示站在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈.

請你再圖中畫出小亮在照明燈P照射下的影子BC;

如果燈桿高PO=12m,小亮的身高AB=1.6m,小亮與燈桿的距離BO=13m,請求出小亮影子的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本題滿分8分)

為營造書香家庭,周末小亮和姐姐一起從家出發(fā)去圖書館借書,走了6分鐘忘帶借書證,小亮立即騎路邊共享單車返回家中取借書證,姐姐以原來的速度繼續(xù)向前行走,小亮取到借書證后騎單車原路原速前往圖書館,小亮追上姐姐后用單車帶著姐姐一起前往圖書館.已知單車的速度是步行速度的3倍,如圖是小亮和姐姐距家的路程y(米)與出發(fā)的時間x(分鐘)的函數圖象,根據圖象解答下列問題:

小亮在家停留了 分鐘.

求小亮騎單車從家出發(fā)去圖書館時距家的路程y(米)與出發(fā)時間x(分鐘)之間的函數關系式.

若小亮和姐姐到圖書館的實際時間為m分鐘,原計劃步行到達圖書館的時間為n分鐘,則n-m= 分鐘.

查看答案和解析>>

同步練習冊答案