如圖①所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,且NQ平行于x軸,N點(diǎn)橫坐標(biāo)為4,求梯形上底AB的長及直角梯形OABC的面積.
(2)當(dāng)2<t<4時,求S關(guān)于t的函數(shù)解析式.

【答案】分析:(1)結(jié)合兩個圖形可知M點(diǎn)坐標(biāo)為(2,8),從而得AB=2,OA=4;由N的橫坐標(biāo)為4,即可得直角梯形的面積.
(2)當(dāng)2<t<4時,陰影部分的面積=直角梯形OABC的面積-三角形ODE的面積,只要求得三角形的面積即可,把OD、OE用含t的式子表示出來,即可得到三角形的面積,由第(1)問已求得直角梯形的面積,代入從而得到陰影部分的面積.
解答:解:

由圖(2)知,M點(diǎn)的坐標(biāo)是(2,8)
∴由此判斷:AB=2,OA=4;(1分)
∵N點(diǎn)的橫坐標(biāo)是4,NQ是平行于x軸的射線,
∴CO=4,(2分)
∴直角梯形OABC的面積為:.(3分)

(2)當(dāng)2<t<4時,
陰影部分的面積=直角梯形OABC的面積-三角形ODE的面積
∴S=12-
∵∠EDO=∠BCO,
∴tan∠EDO==tan∠BCD===2,
∵OD=4-t,
∴OE=2(4-t),(4分)
∴S=12-×2(4-t)•(4-t)=12-(4-t)2
S=-t2+8t-4.(5分)
點(diǎn)評:本題主要考查學(xué)生的閱讀理解能力及靈活運(yùn)用直角梯形、三角形面積、二次函數(shù)等知識的能力,是一道中等難度的綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
①求梯形上底AB的長及直角梯形OABC的面積,
②當(dāng)2<t<4時,求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個三角形,剩下的部分是如圖1所示的直角梯形,其中三邊長分別為5、9、12,則原直角三角形紙片的斜邊長是
26或30
26或30

(2)如圖2,P是矩形ABCD內(nèi)的任意一點(diǎn),連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設(shè)它們的面積分別是S1、S2、S3、S4,給出如下結(jié)論:①S1+S2=S3+S4,②S2+S4=S1+S3,③若S3=2S1,則S4=2S2,④若S1=S2,則P點(diǎn)在矩形的對角線上,其中正確的結(jié)論的序號是
②④
②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(23):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
①求梯形上底AB的長及直角梯形OABC的面積,
②當(dāng)2<t<4時,求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(22):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖1所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
①求梯形上底AB的長及直角梯形OABC的面積,
②當(dāng)2<t<4時,求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷36(義橋?qū)嶒?yàn)學(xué)校 嚴(yán)炯炯)(解析版) 題型:解答題

(2008•義烏)如圖1所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
①求梯形上底AB的長及直角梯形OABC的面積,
②當(dāng)2<t<4時,求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案