【題目】在平面直角坐標(biāo)系xOy,函數(shù)(x>0)的圖象與直線l1:交于點A,與直線l2x=k交于點B.直線l1l2交于點C

(1) 當(dāng)點A的橫坐標(biāo)為1時,則此時k的值為 _______;

(2) 橫、縱坐標(biāo)都是整數(shù)的點叫做整點 記函數(shù)(x>0) 的圖像在點AB之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)W

①當(dāng)k=3時,結(jié)合函數(shù)圖像,則區(qū)域W內(nèi)的整點個數(shù)是_________;

②若區(qū)域W內(nèi)恰有1個整點,結(jié)合函數(shù)圖象,直接寫出k的取值范圍:___________

【答案】(1) ;(2)3;②.

【解析】

1)將A代入函數(shù)(x>0)l1:,即可求出;

2)①畫出當(dāng)k=3時,相應(yīng)的圖象,由圖得到整點的個數(shù);

②分為點C在曲線(x>0)下方、上方兩種情況畫出符合題意的圖象,據(jù)圖寫出k需要滿足的條件.

解:設(shè)點,∵A上,


在函數(shù)的圖象上,
;

故答案為:.

(2)①當(dāng)k=3時,作圖如下,

觀察圖象,區(qū)域W內(nèi)的整點個數(shù)是3;

②當(dāng)點C在曲線(x>0)下方,如下圖

區(qū)域W內(nèi)唯一的1個整點為(1,1),

只需滿足:當(dāng)時,,

;

當(dāng)點C在曲線(x>0)上方,如下圖,

區(qū)域W內(nèi)唯一的1個整點為(2,2),

只需滿足:且當(dāng)時,,,

綜上所述:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校組織的文明出行知識競賽中,81)和82)班參賽人數(shù)相同,成績分為AB、C三個等級,其中相應(yīng)等級的得分依次記為A100分、B90分、C80分,達到B級以上(含B級)為優(yōu)秀,其中82)班有2人達到A級,將兩個班的成績整理并繪制成如下的統(tǒng)計圖,請解答下列問題:

1)求各班參賽人數(shù),并補全條形統(tǒng)計圖;

2)此次競賽中82)班成績?yōu)?/span>C級的人數(shù)為_______人;

3)小明同學(xué)根據(jù)以上信息制作了如下統(tǒng)計表:

平均數(shù)(分)

中位數(shù)(分)

方差

81)班

m

90

n

82)班

91

90

29

請分別求出mn的值,并從優(yōu)秀率和穩(wěn)定性方面比較兩個班的成績;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,ABCCDE均為等邊三角形,直線AD和直線BE交于點F

①求證:ADBE;

②求∠AFB的度數(shù).

(2)如圖2,ABCCDE均為等腰直角三角形,∠ABC=∠DEC90°,直線AD和直線BE交于點F

①求證:ADBE

②若ABBC3,DEEC.將CDE繞著點C在平面內(nèi)旋轉(zhuǎn),當(dāng)點D落在線段BC上時,在圖3中畫出圖形,并求BF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,DBC中點,AEBD,且AEBD

1)求證:四邊形AEBD是矩形;

2)連接CEAB于點F,若∠ABE30°,AE2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,對于已知的△ABC,點P在邊BC的垂直平分線上,若以P點為圓心,PB為半徑的⊙P與△ABC三條邊的公共點個數(shù)之和大于等于3,則稱點P為△ABC關(guān)于邊BC穩(wěn)定點.如圖為△ABC關(guān)于邊BC的一個穩(wěn)定點P的示意圖,已知A(m,0),B(0,n)

(1) 如圖1,當(dāng)時,在點中,△AOB關(guān)于邊OA穩(wěn)定點________

(2) 如圖2,當(dāng)n=4時,若直線y=6上存在△AOB關(guān)于邊AB穩(wěn)定點,則m的取值范圍是___________

(3)如圖3,當(dāng)m=3,時,過點M(5,7)的直線y=kx+b上存在△AOB關(guān)于邊AB穩(wěn)定點,則k的取值范圍是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面內(nèi)的點和點,給出如下定義:點為平面內(nèi)的一點,若點使得是以為頂角且小于90°的等腰三角形,則稱點是點關(guān)于點的銳角等腰點.如圖,點是點關(guān)于點的銳角等腰點.在平面直角坐標(biāo)系中,點是坐標(biāo)原點.

1)已知點,在點,中,是點關(guān)于點的銳角等腰點的是___________

2)已知點,點在直線上,若點是點關(guān)于點的銳角等腰點,求實數(shù)的取值范圍.

3)點軸上的動點,,點是以為圓心,2為半徑的圓上一個動點,且滿足.直線軸和軸分別交于點,若線段上存在點關(guān)于點的銳角等腰點,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在等腰△ABC 中,AB=AC,點 D,E 分別為 BC,AB 的中點,連接 AD.在線段 AD 上任取一點 P,連接 PB,PE.若 BC=4,AD=6,設(shè) PD=x(當(dāng)點 P 與點 D 重合時,x 的值為 0),PB+PE=y.

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y 隨自變量x 的變化而變化的規(guī)律進行了探究. 下面是小明的探究過程,請補充完整:

(1)通過取點、畫圖、計算,得到了 x 與 y 的幾組值,如下表:

x

0

1

2

3

4

5

6

y

5.2

4.2

4.6

5.9

7.6

9.5

說明:補全表格時,相關(guān)數(shù)值保留一位小數(shù).(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)

(2)建立平面直角坐標(biāo)系(圖 2),描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;

(3)求函數(shù) y 的最小值(保留一位小數(shù)),此時點 P 在圖 1 中的什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形為矩形,連接,點邊上.

1)如圖①,若,,求的面積;

2)如圖②,延長至點,使得,連接并延長交于點,過點于點,連接,求證:;

3)如圖③,將線段繞點旋轉(zhuǎn)一定的角度)得到線段,連接,點始終為的中點,連接.已知,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yax2x+4x軸交于AB兩點(A點在B點左側(cè)),與y軸交于點C,且點B的坐標(biāo)為(4,0),點Em0)為x軸上的一個動點,過點E作直線lx軸,與拋物線yax2x+4交于點F,與直線AC交于點G

1)分別求拋物線yax2x+4和直線AC的函數(shù)表達式;

2)當(dāng)﹣8m0時,求出使線段FG的長度為最大值時m的值;

3)如圖2,作射線OF與直線AC交于點P,請求出使FPPO12m的值.

查看答案和解析>>

同步練習(xí)冊答案