如圖所示,正方形的面積為12,是等邊三角形,點在正方形內(nèi),在對角線上有一點, 使的和最小,則這個最小值為(    )
              
A.B.C.3D.
A
解:設(shè)BE與AC交于點F(P'),連接BD,
∵點B與D關(guān)于AC對稱,
∴PD=PB,
∴PD+PE=PB+PE=BE最。
即P在AC與BE的交點上時,PD+PE最小,為BE的長度;
∵正方形ABCD的面積為12,
∴AB=2 .
又∵△ABE是等邊三角形,
∴BE=AB=2
故所求最小值為2 .
故答案為A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將正方形紙片ABCD折疊,使邊AB、CB均落在對角線BD上,得折痕BE、BF,則∠EBF的大小為
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

ABCD中,已知點A(﹣1,0),B(2,0),D(0,1).則點C的坐標為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方形邊長為4,分別是上的兩個動點,當(dāng)點在上運動時,保持垂直,設(shè),梯形的面積為,下列結(jié)論



的函數(shù)關(guān)系式為:
④當(dāng)點運動到的中點時,
其中正確的有    。
 ①②③          ①③④          ②③④         ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)A,B表示兩個集合,我們規(guī)定“A∩B”表示A與B的公共部分,并稱之為A與B的交集.例如:若A={正數(shù)},B={整數(shù)},則A∩B={正整數(shù)}.如果A={矩形},B={菱形},則所對應(yīng)的集合A∩B是   
A.{平行四邊形}B.{矩形}C.{菱形}D.{正方形}

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①在梯形ABCD中,AD∥BC。AB=DC
(1)如果點P,E和F分別是BC,AC和BD的中點,證明:AB=PE+PF
(2)如果點P是線段BC上任意一點(中點除外),PE∥AB,PF∥DC,如圖②所示,那么AB=PE+PF這個結(jié)論還成立嗎?請說明理由
(3)如果點P在線段BC的延長線上, PE∥AB,PF∥DC,其他條件不變,那么結(jié)論AB=PE+PF是否成立?直接寫出結(jié)論,不必證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方形ABCD中,△APD是正三角形,則∠BPC=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在正方形ABCD中,點E是BC邊的中點,過B點作BG⊥AE于點G,交AC于H,交CD于點F。(1)求證:點F為邊BC的中點;(2)如果正方形的邊長為4,求CH的長度;(3)如果點M是BC上的一點,且AM=MC+CD,
探究∠MAD與∠BAE有怎樣的數(shù)量關(guān)系,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設(shè)AC=2,BD=1,AP=x,△CMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是( ▲ )

查看答案和解析>>

同步練習(xí)冊答案