【題目】小敏是一位善于思考的學(xué)生,在一次數(shù)學(xué)活動(dòng)課上,她將一副三角板按如圖位置擺放,A、B、D在同一直線上,EF∥AD,∠BAC=∠EDF=90°,∠C=45°,∠E=60°,測得DE=8,則BD的長是( 。

A. 10+4 B. 104 C. 124 D. 12+4

【答案】C

【解析】EEGlG,過FFHlH,如圖所示:

∵∠EFD=30°,EDF=90°,

∴∠FED=60°,

∴∠GED=30°,

GE=DE=4cm

EFAD,F(xiàn)HEG,

∴四邊形EFHG是平行四邊形,

FH=EG=4

∵∠C=45°,

BH=FH=4,

∵∠FDH=EFD=30°,

DH=FH=12,

BD=124cm

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A,點(diǎn)A在第四象限,過點(diǎn)AAH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.

(1)求正比例函數(shù)的解析式;

(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點(diǎn)EF,與雙曲線y=x0)交于點(diǎn)P1,n),且FPE的中點(diǎn),直線x=al交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),PA=PB,則a=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元二次方程ax2bxc0(a≠0)滿足4a2bc0,且有兩個(gè)相等的實(shí)數(shù)根,則( )

A. baB. c2aC. a(x2)20(a≠0)D. a(x2)20(a≠0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與正方形BFGE中,點(diǎn)E在邊AB上,若AE=a,BE=b,(其中a2b).

1)請(qǐng)用含有a,b的代數(shù)式表示圖中陰影部分的面積;

2)當(dāng)a=5cm,b=3cm時(shí),求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F分別為AB,BC的中點(diǎn),GAD 上的任一點(diǎn).計(jì)S1SBEF , S2SGFC SS□ABCD ,則S________S2________S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,OD,使射線OC平分∠AOD

1)當(dāng)∠BOD50°時(shí),∠COD   °;

2)將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,當(dāng)三角板MON的一邊OM與射線OC重合時(shí),如圖2

在(1)的條件下,∠AON   °;

若∠BOD70°,求∠AON的度數(shù);

若∠BODα,請(qǐng)直接寫出∠AON的度數(shù)(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面解方程的步驟,在后面的橫線上填寫此步驟的依據(jù):

解:去分母,得.①依據(jù):_________

去括號(hào),得.

移項(xiàng),得.②依據(jù):__________

合并同類項(xiàng),得.

系數(shù)化為1,得.

是原方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=的圖象與直線y=﹣x+b都經(jīng)過點(diǎn)A(1,4),且該直線與x軸的交點(diǎn)為B.

(1)求反比例函數(shù)和直線的解析式;

(2)求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案