當(dāng)三角形面積是8cm2時,它的底邊上的高h (cm)與底邊長x(cm)之間的函數(shù)解析式是                     .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•聊城)如圖,在矩形ABCD中,AB=12cm,BC=8cm.點E、F、G分別從點A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向移動.點E、G的速度均為2cm/s,點F的速度為4cm/s,當(dāng)點F追上點G(即點F與點G重合)時,三個點隨之停止移動.設(shè)移動開始后第t秒時,△EFG的面積為S(cm2
(1)當(dāng)t=1秒時,S的值是多少?
(2)寫出S和t之間的函數(shù)解析式,并指出自變量t的取值范圍;
(3)若點F在矩形的邊BC上移動,當(dāng)t為何值時,以點E、B、F為頂點的三角形與以點F、C、G為頂點的三角形相似?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,一張三角形紙片ABC,∠ACB=90°,AC=8cm,BC=6cm.沿斜邊AB的中線CD把這張紙片剪成△AC1D1和△BC2D2兩個三角形(如圖2所示).將紙片△AC1D1沿直線D2B(AB)方向平移(點A、D1、D2、B始終在同一直線上),當(dāng)點A與點B重合時,停止平移.設(shè)平移的速度是1cm/秒,平移的時間為x(秒),△AC1D1與△BC2D2重疊部分面積為y(cm2).
(1)求CD的長和斜邊上的高CH;
(2)在平移過程中(如圖3),設(shè)C1D1與BC2交于點E,AC1與C2D2、BC2分別交于點F、P.那么四邊形FD2D1E是否可能是菱形?為什么?如果可能,請求出相應(yīng)的D1E=D2F的值;
(3)請寫出y與x的函數(shù)關(guān)系式,以及自變量的取值范圍;
(4)是否存在這樣的x的值,使重疊部分面積為3cm2?若存在,求出相應(yīng)的x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省興化市板橋初級中學(xué)九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A沿邊AB向點B以1cm/s的速度移動;同時,點Q從點B沿邊BC向點C以2cm/s的速度移動,設(shè)運動的時間為ts(0<t<6),試嘗試探究下列問題:
(1)當(dāng)t為何值時,△PBQ的面積等于8cm?
(2)求證:四邊形PBQD面積為定值.
(3)當(dāng)t為何值時,△PDQ是等腰三角形?寫出探索過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省興化市九年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A沿邊AB向點B以1cm/s的速度移動;同時,點Q從點B沿邊BC向點C以2cm/s的速度移動,設(shè)運動的時間為ts(0<t<6),試嘗試探究下列問題:

(1)當(dāng)t為何值時,△PBQ的面積等于8cm?

(2)求證:四邊形PBQD面積為定值.

(3)當(dāng)t為何值時,△PDQ是等腰三角形?寫出探索過程.

 

                                                 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:填空題

三角形底邊為8cm,當(dāng)它的高由小到大變化時,三角形的面積也隨之發(fā)生了變化。

1.在這個變化過程中,高是(    ),三角形面積是(    );
2.如果三角形的高為hcm,面積S表示為(    );
3.當(dāng)高由1cm變化到5cm時,面積從(    )cm2變化到(    )cm2;
4.當(dāng)高為3cm時,面積為(    )cm2
5.當(dāng)高為10cm時,面積為_________cm2。

查看答案和解析>>

同步練習(xí)冊答案