分析 (1)由已知條件得出b2-c2+2ab-2ac=0,用分組分解法進行因式分解得出(b-c)(b+c+2a)=0,得出b-c=0,因此b=c,即可得出結(jié)論;
(2)作△ABC底邊BC上的高AD.根據(jù)等腰三角形三線合一的性質(zhì)得出BD=DC=$\frac{1}{2}$BC=3,利用勾股定理求出AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=4,再根據(jù)三角形的面積公式即可求解.
解答 解:(1)△ABC是等腰三角形,理由如下:
∵a,b,c為△ABC的三條邊的長,b2+2ab=c2+2ac,
∴b2-c2+2ab-2ac=0,
因式分解得:(b-c)(b+c+2a)=0,
∴b-c=0,
∴b=c,
∴△ABC是等腰三角形;
(2)如圖,作△ABC底邊BC上的高AD.
∵AB=AC=5,AD⊥BC,
∴BD=DC=$\frac{1}{2}$BC=3,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=4,
∴△ABC的面積=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×6×4=12.
點評 本題考查了因式分解的應用、等腰三角形的判定、勾股定理以及面積的計算;運用因式分解求出b=c是解決問題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
甲(環(huán)) | 6 | 7 | 7 | 10 | 10 |
乙(環(huán)) | 7 | 9 | 9 | 7 | 8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com