【題目】(1)思考探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度數(shù).
(2)類比探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠P=n°.求∠A的度數(shù)(用含n的式子表示).
(3)拓展遷移:已知,在四邊形ABCD中,四邊形ABCD的內(nèi)角∠ABC與外角∠DCE的平分線所在直線相交于點(diǎn)P,∠P=n°,請(qǐng)畫出圖形;并探究出∠A+∠D的度數(shù)(用含n的式子表示).
【答案】(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)畫圖見(jiàn)解析;∠A+∠D=180°+2n°或180°﹣2n°.
【解析】
(1) 根據(jù)三角形內(nèi)角和定理可以算出∠A的大小,再根據(jù)角平分線的性質(zhì)和三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠PCD=∠P+∠PBC,即可得解;
(2)和(1)證明方法類似,先證明∠A+∠ABC=2(∠P+∠PBC),再證明∠A=2∠P即可得到答案;
(3) 延長(zhǎng)BA交CD的延長(zhǎng)線于F根據(jù)三角形內(nèi)角和定理和三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,即可得到第一種情況;延長(zhǎng)AB交DC的延長(zhǎng)線于F,同理即可得到答案.
解:(1)∠A=30°,∠P=15°
∵∠ACD+∠ACB=180°,∠ACD=100°
∴∠ACB=80°,
∵∠ABC+∠ACB+∠A=180°(三角形內(nèi)角和定理),
又∵∠ABC=70°,
∴∠A=30°,
∵P點(diǎn)是∠ABC和外角∠ACD的角平分線的交點(diǎn),
∴∠PCD=∠ACD=50°,∠PBC=∠ABC=35°
∵∠PBC+∠PCB+∠P=180°,∠PCB+∠PCD=180°
∴∠PCD=∠PBC+∠P
∴∠P=50°-35°=15°
(2)結(jié)論:∠A=2n°,理由如下:
∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和),
又∵P點(diǎn)是∠ABC和外角∠ACD的角平分線的交點(diǎn),
∴∠ACD=2∠PCD,∠ABC=2∠PBC,
∴∠A+∠ABC=2(∠P+∠PBC)(等量替換),
∴∠A+∠ABC=2∠P+2∠PBC,
∴∠A+∠ABC=2∠P+∠ABC(等量替換),
∴∠A=2∠P;
∴∠A=2n°
(3)(Ⅰ)如圖②延長(zhǎng)BA交CD的延長(zhǎng)線于F.
∵∠F=180°﹣∠FAD﹣∠FDA
=180°﹣(180°﹣∠A)﹣(180°﹣∠D)
=∠A+∠D﹣180°,
由(2)可知:∠F=2∠P=2n°,
∴∠A+∠D=180°+2n°。
(Ⅱ)如圖③,延長(zhǎng)AB交DC的延長(zhǎng)線于F.
∵∠F=180°﹣∠A﹣∠D,∠P=∠F,
∴∠P=(180°﹣∠A﹣∠D)=90°﹣(∠A+∠D).
∴∠A+∠D=180°﹣2n°
綜上所述:∠A+∠D=180°+2n°或180°﹣2n° ;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩座倉(cāng)庫(kù)分別有農(nóng)用車12輛和6輛.現(xiàn)在需要調(diào)往A縣10輛,需要調(diào)往B縣8輛,已知從甲倉(cāng)庫(kù)調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費(fèi)分別為40元和80元;從乙倉(cāng)庫(kù)調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費(fèi)分別為30元和50元.
(1)設(shè)乙倉(cāng)庫(kù)調(diào)往A縣農(nóng)用車x輛,先填好下表,再寫出總運(yùn)費(fèi)y關(guān)于x的函數(shù)關(guān)系式;
(2)若要求總運(yùn)費(fèi)不超過(guò)900元,問(wèn)共有幾種調(diào)運(yùn)方案?
(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是加熱食用油的溫度變化情況:
時(shí)間 | 0 | 10 | 20 | 30 | 40 |
油溫℃ | 10 | 30 | 50 | 70 | 90 |
王紅發(fā)現(xiàn),燒了110時(shí),油沸騰了,則下列說(shuō)法不正確的是( )
A.沒(méi)有加熱時(shí),油的溫度是10℃B.加熱50,油的溫度是110℃
C.估計(jì)這種食用油的沸點(diǎn)溫度約是230℃D.每加熱10,油的溫度升高30℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完全平方公式:(a±b)2=a2±2ab+b2適當(dāng)?shù)淖冃,可以解決很多的數(shù)學(xué)問(wèn)題.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因?yàn)?/span>a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根據(jù)上面的解題思路與方法,解決下列問(wèn)題:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如圖,點(diǎn)C是線段AB上的一點(diǎn),以AC、BC為邊向兩邊作正方形,設(shè)AB=5,兩正方形的面積和S1+S2=17,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BCA=90°,AC=BC,BE⊥CF于點(diǎn)E,AF⊥CF于點(diǎn)F,其中0<∠ACF<45°.
(1)求證:△BEC≌△CEA;
(2)若AF=5,EF=8,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列地方銀行的標(biāo)志中,既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連接AF,BF.
(1)求證:四邊形BFDE是矩形
(2)若CF=6,BF=8,DF=10,求證:AF是∠DAB的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,平分,,,,有下列結(jié)論:
①;②平分;③;④.
請(qǐng)將正確結(jié)論的序號(hào)填寫在空中,并選擇其一證明.
正確結(jié)論的序號(hào)是______,我選擇證明的結(jié)論序號(hào)是______,證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為更好的開(kāi)展“冬季趣味運(yùn)動(dòng)會(huì)”活動(dòng),隨機(jī)在各年級(jí)抽查了部分學(xué)生,了解他們最喜愛(ài)的趣味運(yùn)動(dòng)項(xiàng)目類型(跳長(zhǎng)繩、踢毽子、背夾球、拔河共四類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表.
根據(jù)以上信息回答下列問(wèn)題:
最喜愛(ài)的趣味運(yùn)動(dòng)項(xiàng)目類型頻數(shù)分布表:
項(xiàng)目類型 | 頻數(shù) | 頻率 |
跳長(zhǎng)繩 | 25 | a |
踢毽子 | 20 | 0.2 |
背夾球 | b | 0.4 |
拔河 | 15 | 0.15 |
(1)直接寫出a= , b=;
(2)利用頻數(shù)分布表中的數(shù)據(jù),在圖中繪制扇形統(tǒng)計(jì)圖(注明項(xiàng)目、百分比、圓心角);
(3)若全校共有學(xué)生1200名,估計(jì)該校最喜愛(ài)背夾球和拔河的學(xué)生大約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com