如圖(1)~(3),已知∠AOB的平分線OM上有一點(diǎn)P,∠CPD的兩邊與射線OA、OB交于點(diǎn)C、D,連接CD交OP于點(diǎn)G,設(shè)∠AOB=α(0°<α<180°),∠CPD=β.
(1)如圖(1),當(dāng)α=β=90°時(shí),試猜想PC與PD,∠PDC與∠AOB的數(shù)量關(guān)系(不用說明理由);
(2)如圖(2),當(dāng)α=60°,β=120°時(shí),(1)中的兩個(gè)猜想還成立嗎?請(qǐng)說明理由.
(3)如圖(3),當(dāng)α+β=180°時(shí),
①你認(rèn)為(1)中的兩個(gè)猜想是否仍然成立,若成立請(qǐng)直接寫出結(jié)論;若不成立,請(qǐng)說明理由.
②若數(shù)學(xué)公式=2,求數(shù)學(xué)公式的值.

解:(1)PC=PD,∠PDC=∠AOB.

(2)成立.理由如下:
作PE⊥AO于E,PF⊥OB于F,如圖.
∵OP平分∠AOB,
∴PE=PF.
在四邊形EOFP中,
∵∠AOB=60°,∠PEO=∠PFO=90°,
∴∠EPF=120°,即∠EPC+∠CPF=120°.
又∠CPD=120°,即∠DPF+∠CPF=120°.
∴∠EPC=∠DPF.
∴△EPC≌△FPD.
∴PC=PD,
∴∠PDC==30°.
∵∠AOB=60°,
∴∠PDC=∠AOB,

(3)①成立,
②∵∠PDC=∠AOB,
∠POD=∠AOB,
∴∠PDC=∠POD.
又∠DPG=∠DPO,
∴△PGD∽△PDO.
=
又 =2,
=
分析:(1)作PE⊥AO于E,PF⊥OB于F,證明△PDF≌△PCE可得PC=PD;根據(jù)四邊形內(nèi)角和及等腰三角形性質(zhì)可得∠PDC=∠AOB;
(2)根據(jù)(1)的思路可證結(jié)論成立;
(3)根據(jù)上面思路猜想,成立;根據(jù)上面結(jié)論可證△PDG∽△POD,從而求解.
點(diǎn)評(píng):此題考查三角形相似(包括全等)的判定和性質(zhì),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點(diǎn)是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點(diǎn),過A,B兩點(diǎn)分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點(diǎn)得菱形,又順次連接菱形各邊中點(diǎn)得矩形,再順次連接矩形各邊中點(diǎn)得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖是某幾何體的三視圖,則這個(gè)幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案