某商品的進價為每件40元.當售價為每件60元時,每星期可賣出300件,現(xiàn)需降價處理,為占有市場份額,且經(jīng)市場調查:每降價1元,每星期可多賣出20件.現(xiàn)在要使利潤為6120元,每件商品應降價元.


  1. A.
    3
  2. B.
    2.5
  3. C.
    2
  4. D.
    5
A
分析:設售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現(xiàn)在可以賣出[300+20(60-x)]件,然后根據(jù)盈利為6120元即可列出方程解決問題.
解答:設售價為x元時,每星期盈利為6120元,
由題意得(x-40)[300+20(60-x)]=6120,
解得:x1=57,x2=58,
由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=58.
∴每件商品應降價60-57=3元.
故選A.
點評:本題考查了一元二次方程的應用.此題找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某商品的進價為每件40元,售價為每件60元時,每個月可賣出100件;如果每件商品的售價每上漲1元,則每個月少賣2件.設每件商品的售價為x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)當售價的范圍是多少時,使得每件商品的利潤率不超過80%且每個月的利潤不低于2250元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商品的進價為每件40元,售價為每件60元時,每個月可賣出800件;如果每件商品的售價每上漲1元,則每個月少賣20件.設每件商品售價為x元,每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大銷售利潤?最大的月銷售利潤是多少元?
(3)物價部門規(guī)定每件商品的利潤率不高于100%,商家為了使每個月的銷售利潤不低于10000元,如何定價,商品的月銷售量最大?最大銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知某商品的進價為每件40元,售價是每件60元,每星期可賣出300件.市場調查反映:如果調整價格,每漲價一元,每星期要少賣出10件.設該商品定價為每件x元.
(1)該商店每星期的銷售量是
900-10x
900-10x
件(用含x的代數(shù)式表示);
(2)設商場每星期獲得的利潤為y元,求y與x的函數(shù)關系式;
(3)該商品應定價為多少元時,商場能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•巴中)某商品的進價為每件50元,售價為每件60元,每個月可賣出200件,如果每件商品的售價上漲1元,則每個月少買10件(每件售價不能高于72元),設每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大月利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知某商品的進價為每件40元,售價是每件60元,每星期可賣出300件.市場調查反映:如調整價格進行漲價銷售,每漲價一元,每星期要少賣出10件.該商品應定價為多少元時,商場能獲得最大利潤?

查看答案和解析>>

同步練習冊答案