【題目】如圖,已知點(diǎn)O是△ABC的兩條角平分線的交點(diǎn),
(1)若∠A=30°,則∠BOC的大小是 ;
(2)若∠A=60°,則∠BOC的大小是 ;
(3)若∠A=n°,則∠BOC的大小是多少?試用學(xué)過的知識(shí)說明理由.
【答案】 (1) 105°; (2) 120°;(3) n°+90°.
【解析】試題分析:∠BOC+∠OBC+∠OCB=180°,根據(jù)角平分線的定義得到∠ABC=2∠OBC,∠ACB=2∠OCB,等量代換得到∠BOC+ ∠ABC+∠ACB=180°,根據(jù)三角形的內(nèi)角和定理即可得到結(jié)論.
試題解析:
(1)如圖,在△ABC中,∠A+∠ABC+∠ACB=180°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∵BO,CO分別是∠ABC和∠ACB的平分線,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠BOC+ ∠ABC+∠ACB=180°,
又∵在△ABC中,∠A+∠ABC+∠ACB=180°,
∴∠BOC=∠A+90°=105°;
(2)如圖,在△ABC中,∠A+∠ABC+∠ACB=180°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∵BO,CO分別是∠ABC和∠ACB的平分線,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠BOC+∠ABC+∠ACB=180°,
又∵在△ABC中,∠A+∠ABC+∠ACB=180°,
∴∠BOC=∠A+90°=120°;
(3)∠BOC=n°+90°,
∵OB、OC是兩條角平分線,
∴∠OBC=∠ABC, ∠OCB=∠ACB ,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)
=180°-(∠ABC+∠ACB)
=180°-(∠ABC+∠ACB)
=180°-(180°-∠A)
=∠A+90°
=n°+90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與y軸交于點(diǎn)C(0,﹣6),與x軸的一個(gè)交點(diǎn)坐標(biāo)是A(﹣2,0).
(1)求二次函數(shù)的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)將二次函數(shù)的圖象沿x軸向左平移個(gè)單位長(zhǎng)度,當(dāng) y<0時(shí),求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形OABC是邊長(zhǎng)為4的正方形,點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PM⊥CP交AB于點(diǎn)D,且PM=CP,過點(diǎn)M作MN∥AO,交BO于點(diǎn)N,連結(jié)ND、BM,設(shè)OP=t.
(1)求點(diǎn)M的坐標(biāo)(用含t的代數(shù)式表示);
(2)試判斷線段MN的長(zhǎng)度是否隨點(diǎn)P的位置的變化而改變?并說明理由.
(3)當(dāng)t為何值時(shí),四邊形BNDM的面積最;
(4)在x軸正半軸上存在點(diǎn)Q,使得△QMN是等腰三角形,請(qǐng)直接寫出不少于4個(gè)符合條件的點(diǎn)Q的坐標(biāo)(用含t的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使用某共享單車,行程在m千米以內(nèi)收費(fèi)1元,超過m千米的,每千米另收2元.若要讓使用該共享單車50%的人只花1元錢,m應(yīng)。 )
A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,第四象限的點(diǎn)M到橫軸的距離為28,到縱軸的距離為6,則點(diǎn)M的坐標(biāo)為____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在-3,0,1, 2這四個(gè)有理數(shù)中,是負(fù)數(shù)的是( )
A. -3 B. 0 C. 1 D. 2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com