精英家教網 > 初中數學 > 題目詳情
某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.請你補全這個輸水管道的圓形截面.
分析:
AB
上找一個點C,連接AC,分別作出弦AB與AC的垂直平分線,兩線交于O點,則點O為輸水管的圓心,連接OA,即為輸水管的半徑,補全這個輸水管道的圓形截面即可.
解答:解:在
AB
上找一個點C,連接AC,
作出AB與AC的垂直平分線,交于O點,連接OA,
以O點為圓心,OA長為半徑畫圓,
將這個輸水管道的圓形截面補全,如圖所示.
點評:此題考查了垂徑定理的應用,圓中弦的垂直平分線必然過圓心,熟練掌握此性質是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

6、我市某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道的半徑,下面是水平放置的破裂管道有水部分的截面.維修人員測得這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,那么管道的半徑是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•市中區(qū)二模)(1)已知:如圖1,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D為AB邊上一點.求證:△ACE≌△BCD
(2)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,圖2是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•天橋區(qū)三模)(1)已知:如圖1,?ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.
(2)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖2是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,則這個圓形截面的半徑為
10
10
cm.

查看答案和解析>>

同步練習冊答案