如圖,將△AOB置于平面直角坐標(biāo)系中,其中點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),∠ABO=60度.
(1)若△AOB的外接圓與y軸交于點(diǎn)D,求D點(diǎn)坐標(biāo).
(2)若點(diǎn)C的坐標(biāo)為(-1,0),試猜想過(guò)D,C的直線與△AOB的外接圓的位置關(guān)系,并加以說(shuō)明.
(3)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)O和A且頂點(diǎn)在圓上,求此函數(shù)的解析式.
(1)連接AD,則∠ADO=∠B=60°,
在Rt△ADO中,∠ADO=60°,
所以O(shè)D=OA÷
3
=3÷
3
=
3
,
所以D點(diǎn)的坐標(biāo)是(0,
3
);

(2)猜想:CD與圓相切,
∵∠AOD是直角,
∴AD是圓的直徑,
又∵tan∠CDO=
CO
DO
=
1
3
=
3
3
,∠CDO=30°,
∴∠CDA=∠CDO+∠ADO=90°,即CD⊥AD,
∴CD切外接圓于點(diǎn)D;

(3)依題意可設(shè)二次函數(shù)的解析式為:
y=α(x-0)(x-3),
由此得頂點(diǎn)坐標(biāo)的橫坐標(biāo)為:x=
3a
2a
=
3
2
;
即頂點(diǎn)在OA的垂直平分線上,作OA的垂直平分線EF,
則得∠EFA=
1
2
∠B=30°,
即得到EF=
3
EA=
3
2
3
可得一個(gè)頂點(diǎn)坐標(biāo)為(
3
2
,
3
2
3
),
同理可得另一個(gè)頂點(diǎn)坐標(biāo)為(
3
2
-
1
2
3
),
分別將兩頂點(diǎn)代入y=α(x-0)(x-3)
可解得α的值分別為-
2
3
3
2
3
9
,
則得到二次函數(shù)的解析式是y=-
2
3
3
x(x-3)或y=
2
3
9
x(x-3).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+c與y軸交于點(diǎn)C,與x軸交于點(diǎn)A(x1,0)、B(x2,0)(x1<x2),頂點(diǎn)M的縱坐標(biāo)為-4,若x1、x2是方程x2-2(m-1)x+m2-7=0的兩個(gè)根,且x21+x22=10.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P,使三角形PAB的面積等于四邊形ACMB的面積的2倍?若存在,求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,拋物線y=a(x-2)2-2的頂點(diǎn)為C,拋物線與x軸交于A,B兩點(diǎn)(其中A點(diǎn)在B點(diǎn)的左邊),CH⊥AB于H,且tan∠ACH=
1
2

(1)求拋物線的解析式;
(2)在坐標(biāo)平面內(nèi)是否存在一點(diǎn)D,使得以O(shè)、B、C、D為頂點(diǎn)的四邊形是等腰梯形?若存在,求所有的符合條件的D點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,將(1)中的拋物線平移,使其頂點(diǎn)在y軸的正半軸上,在y軸上是否存在一點(diǎn)M,使得平移后的拋物線上的任意一點(diǎn)P到x軸的距離與P點(diǎn)到M的距離相等?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)頂點(diǎn)為C(1,1)且過(guò)原點(diǎn)O.過(guò)拋物線上一點(diǎn)P(x,y)向直線y=
5
4
作垂線,垂足為M,連FM(如圖).
(1)求字母a,b,c的值;
(2)在直線x=1上有一點(diǎn)F(1,
3
4
)
,求以PM為底邊的等腰三角形PFM的P點(diǎn)的坐標(biāo),并證明此時(shí)△PFM為正三角形;
(3)對(duì)拋物線上任意一點(diǎn)P,是否總存在一點(diǎn)N(1,t),使PM=PN恒成立?若存在請(qǐng)求出t值,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2-2ax與直線l:y=ax(a>0)的交點(diǎn)除了原點(diǎn)O外,還相交于另一點(diǎn)A.
(1)分別求出這個(gè)拋物線的頂點(diǎn)、點(diǎn)A的坐標(biāo)(可用含a的式子表示);
(2)將拋物線y=ax2-2ax沿著x軸對(duì)折(翻轉(zhuǎn)180°)后,得到的圖象叫做“新拋物線”,則:①當(dāng)a=1時(shí),求這個(gè)“新拋物線”的解析式,并判斷這個(gè)“新拋物線”的頂點(diǎn)是否在直線l上;②在①的條件下,“新拋物線”上是否存在一點(diǎn)P,使點(diǎn)P到直線l的距離等于線段OA的
1
24
?若存在,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某企業(yè)為打入國(guó)際市場(chǎng),決定從A、B兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)美元)
項(xiàng)目
類(lèi)別
年固定
成本
每件產(chǎn)品
成本
每件產(chǎn)品
銷(xiāo)售價(jià)
每年最多可
生產(chǎn)的件數(shù)
A產(chǎn)品20m10200
B產(chǎn)品40818120
其中年固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),m為待定常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì)6≤m≤8.另外,年銷(xiāo)售x件B產(chǎn)品時(shí)需上交0.05x2萬(wàn)美元的特別關(guān)稅.假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷(xiāo)售出去.
(1)寫(xiě)出該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤(rùn)y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系并指明其自變量取值范圍;
(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)你做出規(guī)劃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,B是長(zhǎng)度為1的線段AE上任意一點(diǎn),在AE的同一側(cè)分別作正方形ABCD和長(zhǎng)方形BEFG,且EF=2BE.

(1)點(diǎn)B在何處時(shí),正方形ABCD的面積與長(zhǎng)方形BEFG的面積和最小,最小值為多少?
(2)若點(diǎn)C與點(diǎn)G重合,M為AB中點(diǎn),N為EF中點(diǎn),MN與BC交于點(diǎn)H(如圖2所示),將△OMA沿直線DM,△MNE沿直線MN分別向矩形AEFD內(nèi)折疊,求四邊形DMNF未被兩個(gè)折疊三角形覆蓋的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

向上發(fā)射一枚炮彈,經(jīng)x秒后的高度為y公尺,且時(shí)間與高度關(guān)系為y=ax2+bx.若此炮彈在第8秒與第14秒時(shí)的高度相等,則再下列哪一個(gè)時(shí)間的高度是最高的?(  )
A.第11秒B.第10秒C.第9秒D.第8秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+px+q的頂點(diǎn)M在第一象限,與x軸和y軸的正半軸分別交于點(diǎn)A、B,其中A的坐標(biāo)為(2,0),且四邊形AOMB的面積為
11
4
,求p、q的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案