【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點(diǎn)P

1)若∠B40°,∠AEC75°,求證:ABBC

2)若∠BAC90°,AP為△AECEC上中線,求∠B的度數(shù).

【答案】1)證明見解析;(230°.

【解析】

由三角形的內(nèi)角和可求出∠ECB35°,根據(jù)角平分線的定義可求∠ACB70°,進(jìn)而可求出∠BAC70°,從而結(jié)論可證;

2)由AP是△AECEC上的中線可知APPC,從而∠PAC=∠PCA,由CE是∠ACB的平分線,可證∠PAC=∠PCA=∠PCD,從而可求出∠PAC的度數(shù),然后求出∠BAD60°,繼而可求出∠B的值.

1)證明:∵∠B40°,∠AEC75°,

∴∠ECB=∠AEC﹣∠B35°,

CE平分∠ACB,

∴∠ACB2BCE70°,

BAC180°﹣∠B﹣∠ACB180°﹣40°﹣70°=70°,

∴∠BAC=∠BCA,

ABAC

2)∵∠BAC90°,AP是△AECEC上的中線,

APPC

∴∠PAC=∠PCA,

CE是∠ACB的平分線,

∴∠PAC=∠PCA=∠PCD,

∵∠ADC90°,

∴∠PAC=∠PCA=∠PCD90°÷330°,

∴∠BAD60°,

∵∠ADB90°,

∴∠B90°﹣60°=30°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在等腰直角中,,,將邊繞點(diǎn)順時針旋轉(zhuǎn)得到線段,則的面積為_______

(2)如圖,在直角 中,,,將邊繞點(diǎn)順時針旋轉(zhuǎn)得到線段,連接,求的面積,并說明理由.(用含的式子表示)

(3)如圖,在等腰中,,將邊繞點(diǎn)順時針旋轉(zhuǎn)得到線段,連接,若,則 的面積為 (用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿邊AB向終點(diǎn)B運(yùn)動.過點(diǎn)PPQ⊥AB交折線ACB于點(diǎn)QDPQ中點(diǎn),以DQ為邊向右側(cè)作正方形DEFQ.設(shè)正方形DEFQ△ABC重疊部分圖形的面積是ycm2),點(diǎn)P的運(yùn)動時間為xs).

1)當(dāng)點(diǎn)Q在邊AC上時,正方形DEFQ的邊長為 cm(用含x的代數(shù)式表示);

2)當(dāng)點(diǎn)P不與點(diǎn)B重合時,求點(diǎn)F落在邊BC上時x的值;

3)當(dāng)0x2時,求y關(guān)于x的函數(shù)解析式;

4)直接寫出邊BC的中點(diǎn)落在正方形DEFQ內(nèi)部時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O直徑,C是半圓上一點(diǎn),連接BC、AC,過點(diǎn)OODBC與過點(diǎn)A的切線交于點(diǎn)D,連接DC并延長交AB的延長線于點(diǎn)E.

(1)求證:DE是⊙O的切線;

(2)若AE=3,CE=,求線段CE、BE與劣弧BC所圍成的圖形面積(結(jié)果保留根號和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC 中,∠ACB=90°,AC=6,BC=8,點(diǎn)D是線段AB上的動點(diǎn),M、N分別是AD、CD的中點(diǎn),連接MN,當(dāng)點(diǎn)D由點(diǎn)A向點(diǎn)B運(yùn)動的過程中,線段MN所掃過的區(qū)域的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A36°,BD、CE分別是∠ABC、∠BCD的平分線,則圖中的等腰三角形有(  )

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:有些代數(shù)恒等式可以利用平面圖形的面積來表示,如:

就可以用如圖所示的面積關(guān)系來說明。

(1)請根據(jù)如圖寫出代數(shù)恒等式,并根據(jù)所寫恒等式計(jì)算:

(2)的值;

(3)現(xiàn)有如圖中的彩色卡片:A型、B型、C型,把這些卡片不重疊不留縫隙地貼在棱長為100個立方體表面進(jìn)行裝飾,A型、B型、C型卡片的單價分別為0.7/張、0.5/張、0.4/張,共需多少費(fèi)用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點(diǎn)A為切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)DAP的中點(diǎn),連結(jié)CD.

(1)求證:CD是⊙O的切線;

(2)若AB=2,P=30°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人用如圖所示的兩個分格均勻的轉(zhuǎn)盤做游戲:分別轉(zhuǎn)動兩個轉(zhuǎn)盤,若轉(zhuǎn)盤停止后,指針指向一個數(shù)字(若指針恰好停在分格線上,則重轉(zhuǎn)一次),用所指的兩個數(shù)字作乘積,如果積大于10,那么甲獲勝;如果積不大于10,那么乙獲勝.清你解決下列問題:

l)利用樹狀圖(或列表)的方法表示游戲所有可能出現(xiàn)的結(jié)果;

2)求甲、乙兩人獲勝的概率,并說明游戲是否公平.

查看答案和解析>>

同步練習(xí)冊答案