【題目】設(shè)、是兩個(gè)任意獨(dú)立的一位正整數(shù),則點(diǎn)在拋物線的上方的概率是(

A. B. C. D.

【答案】D

【解析】

根據(jù)ab是兩個(gè)任意獨(dú)立的一位正整數(shù),得出a,b19然后求出點(diǎn)(a,b)在拋物線y=ax2bx的上方的所有情況,再根據(jù)概率公式即可求出答案

a、b是兩個(gè)任意獨(dú)立的一位正整數(shù)a,b19∴代入x=a時(shí),y=a3ba

∵點(diǎn)(ab)在拋物線y=ax2bx的上方,by=ba3+ba0,當(dāng)a=1時(shí),b1+b0b,9個(gè)數(shù),b=1,2,34,5,6,7,89,當(dāng)a=2時(shí),b8+2b0,b,7個(gè)數(shù),b=34,5,67,8,9當(dāng)a=3時(shí),b27+3b0b,3個(gè)數(shù),b=7,8,9當(dāng)a=4時(shí),b64+4b0b,0個(gè)數(shù)b在此以上無解,∴共有19個(gè),而總的可能性為9×9=81∴點(diǎn)(a,b)在拋物線y=ax2bx的上方的概率是

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)EA出發(fā),沿AB→BC方向運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)EFE⊥AE,交CDF點(diǎn),設(shè)點(diǎn)E運(yùn)動(dòng)路程為x,F(xiàn)C=y,如圖2所表示的是yx的函數(shù)關(guān)系的大致圖象,當(dāng)點(diǎn)EBC上運(yùn)動(dòng)時(shí),FC的最大長(zhǎng)度是,則矩形ABCD的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DE分別在AC,AB上,BDCE相交于點(diǎn)O,已知∠B=∠C,現(xiàn)添加下面的哪一個(gè)條件后,仍不能判定ABD≌△ACE的是( 。

A.ADAEB.ABACC.BDCED.ADB=∠AEC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,邊長(zhǎng)為的正方形的一個(gè)頂點(diǎn)在邊上,與另兩邊分

別交于點(diǎn)、,,將正方形平移,使點(diǎn)保持在上(不與重合),設(shè),正方形與重疊部分的面積為

的函數(shù)關(guān)系式并寫出自變量的取值范圍;

為何值時(shí)的值最大?

在哪個(gè)范圍取值時(shí)的值隨的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,這一種方法稱為配方法,利用配方法請(qǐng)解以下各題:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a24a的值中是否存在最小值?請(qǐng)說明理由.

(3)應(yīng)用:如圖.已知線段AB6,MAB上的一個(gè)動(dòng)點(diǎn),設(shè)AMx,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長(zhǎng)方形MBCN.問:當(dāng)點(diǎn)MAB上運(yùn)動(dòng)時(shí),長(zhǎng)方形MBCN的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;否則請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知線段、相交于點(diǎn)O,連接.

1)求證:;

2)如圖2,的平分線、相交于點(diǎn)P,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,點(diǎn)D在邊BC上,點(diǎn)E在邊AC上,且ADAE

1)如圖1,當(dāng)AD是邊BC上的高,且∠BAD30°時(shí),求∠EDC的度數(shù);

2)如圖2,當(dāng)AD不是邊BC上的高時(shí),請(qǐng)判斷∠BAD與∠EDC之間的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)四個(gè)層次,并繪制成如圖9的兩幅尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

(1)這次調(diào)查一共抽取了   名學(xué)生;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)分別求出安全意識(shí)為淡薄的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比、安全意識(shí)為很強(qiáng)的學(xué)生所在扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過點(diǎn)GEFBCABE,交ACF,過點(diǎn)GGDACD,下列四個(gè)結(jié)論:

EFBE+CF;②∠BGC90°+A;③點(diǎn)G到△ABC各邊的距離相等;④設(shè)GDmAE+AFn,則SAEFmn.其中正確的結(jié)論有(  )

A.①②④B.①③④C.①②③D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案