【題目】如圖,在四邊形ADBC中,∠ACB=ADB=90°,AD=BD,AC=3,BC=4,則線段CD的長等于__________

【答案】

【解析】

BCD繞點D逆時針旋轉(zhuǎn)90°AED處,點B,C分別落在點A,E處(如圖),于是得到∠CBD=EAD,AE=BC,根據(jù)四邊形的內(nèi)角和得到點CA,E在同一條直線上,根據(jù)勾股定理即可得到結(jié)論.

解:將BCD繞點D逆時針旋轉(zhuǎn)90°AED處,點B,C分別落在點A,E處(如圖),


∴∠CBD=EADAE=BC,
∵∠ACB=ADB=90°,
∴∠CBD+CAD=180°,
∴∠EAD+CAD=180°
∴點C,AE在同一條直線上,且CDE是等腰直角三角形,
CE=CD,
CE=AC+BC=7,
CD=AC+BC=,
故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線,直線與雙曲線交于點,將直線向下平移與雙曲線交于點,與軸交于點,與雙曲線交于點,,,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,的三個頂點都在邊長為的小正方形的格點上,關(guān)軸的對稱圖形為,以組成一個基本圖形,不斷復(fù)制與平移這個基本圖形,得到圖形所示的圖形

1)觀察以上圖形并填寫下列各點坐標(biāo):

,,,為正整數(shù))

2)若是這組圖形中的一個三角形,當(dāng)時,則 ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為4的等邊三角形,點DAB上異于A,B的一動點,將△ACD繞點C逆時針旋轉(zhuǎn)60°△BCE,則旋轉(zhuǎn)過程中△BDE周長的最小值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐵嶺市某商貿(mào)公司以每千克40元的價格購進(jìn)一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量y(千克)與每千克降價x()(0x20)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:

(1)yx之間的函數(shù)關(guān)系式;

(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價多少元?

(3)該干果每千克降價多少元時,商貿(mào)公司獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩人同時各接受了300個零件的加工任務(wù),甲比乙每小時加工的數(shù)量多,兩人同時開工,其中一人因機器故障停止加工若干小時后又繼續(xù)按原速加工,直到他們完成任務(wù)。如圖表示甲比乙多加工的零件數(shù)量y(個)與加工時間x(小時)之間的函數(shù)關(guān)系,觀察圖象解決下列問題:

1)其中一人因故障,停止加工_________小時,C點表示的實際意義是________________.甲每小時加工的零件數(shù)量為_____________個;

2)求線段BC對應(yīng)的函數(shù)關(guān)系式和D點坐標(biāo);

3)乙在加工的過程中,多少小時時比甲少加工75個零件?

4)為了使乙能與甲同時完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每小時能加工80個零件,并把丙加工的零件數(shù)記在乙的名下,問丙應(yīng)在第多少小時時開始幫助乙?并在圖中用虛線畫出丙幫助后yx之間的函數(shù)關(guān)系的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸于兩點,與軸交于點,連接

求拋物線的解析式;

軸下方拋物線上的一點,且,請通過計算或推理判斷的位置關(guān)系:

軸左側(cè)的拋物線上是否存在與點不重合的點,使等于中的某個銳角? 若存在,請求出的值:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,BC=9, CA=12∠ABC的平分線BDAC與點D, DE⊥DBAB于點E

1)設(shè)⊙O△BDE的外接圓,求證:AC⊙O的切線;

2)設(shè)⊙OBC于點F,連結(jié)EF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點,與軸交于點,的半徑為,上一動點.

1)求點的坐標(biāo)?

2)是否存在點,使得為直角三角形?若存在,求出點的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案