分析 (1)由切線的性質(zhì)可知∠DAB=90°,由直角所對(duì)的圓周為90°可知∠ACB=90°,根據(jù)同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質(zhì)可知∠B=∠OCB,由對(duì)頂角的性質(zhì)可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;
(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2$\sqrt{2}$,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=$\sqrt{2}$,于是可求得AE=$\sqrt{2}$.
解答 解:(1)∵AD是圓O的切線,
∴∠DAB=90°.
∵AB是圓O的直徑,
∴∠ACB=90°.
∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,
∴∠DAC=∠B.
∵OC=OB,
∴∠B=∠OCB.
又∵∠DCE=∠OCB.
∴∠DAC=∠DCE.
(2)∵AB=2,
∴AO=1.
∵sin∠D=$\frac{1}{3}$,
∴OD=3,DC=2.
在Rt△DAO中,由勾股定理得AD=$\sqrt{O{D}^{2}-O{A}^{2}}$=2$\sqrt{2}$.
∵∠DAC=∠DCE,∠D=∠D,
∴△DEC∽△DCA.
∴$\frac{DC}{AD}=\frac{DE}{DC}$,即$\frac{2}{2\sqrt{2}}=\frac{ED}{2}$.
解得:DE=$\sqrt{2}$.
∴AE=AD-DE=$\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查的是切線的性質(zhì)、圓周角定理、勾股定理的應(yīng)用、相似三角形的性質(zhì)和判定,證得△DEC∽△DCA是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2-7x+12=0 | B. | x2+7x+12=0 | C. | x2+7x-12=0 | D. | x2-7x-12=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com