【題目】如圖,在ABCD中,E是AD上一點,連接BE,F為BE中點,且AF=BF,
(1)求證:四邊形ABCD為矩形;
(2)過點F作FG⊥BE,垂足為F,交BC于點G,若BE=BC,S△BFG=5,CD=4,求CG.
【答案】(1)證明見解析;(2)CG的長為
【解析】試題分析:(1)求出∠BAE=90°,根據(jù)矩形的判定推出即可;(2)求出△BGE面積,根據(jù)三角形面積公式求出BG,得出EG長度,根據(jù)勾股定理求出GH,求出BE,得出BC長度,即可求出答案.
試題解析:(1)證明:∵F為BE中點,AF=BF,
∴AF=BF=EF,
∴∠BAF=∠ABF,∠FAE=∠AEF,
在△ABE中,∠BAF+∠ABF+∠FAE+∠AEF=180°,
∴∠BAF+∠FAE=90°,
又四邊形ABCD為平行四邊形,
∴四邊形ABCD為矩形;
(2)連接EG,過點E作EH⊥BC,垂足為H,
∵F為BE的中點,FG⊥BE,
∴BG=GE,
∵S△BFG=5,CD=4,
∴S△BGE=10=BGEH,
∴BG=GE=5,
在Rt△EGH中,GH==3,
在Rt△BEH中,BE===BC,
∴CG=BC﹣BG=﹣5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1) x2-(x+2)(x-2) (2)
(3)(6x3y)2 ·(-4xy3)÷(-12x2y)(4)運用乘法公式計算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列定理中,沒有逆定理的是( 。
A. 兩直線平行,同位角相等
B. 全等三角形的對應(yīng)邊相等
C. 全等三角形的對應(yīng)角相等
D. 在角的內(nèi)部,到角的兩邊距離相等的點在角的平分線上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把拋物線y=x2+bx+c的圖象向右平移3個單位,再向下平移2個單位,所得圖象的解析式為y=x2﹣3x+5,則( )
A. b=3,c=7 B. b=6,c=3 C. b=﹣9,c=﹣5 D. b=﹣9,c=21
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若k>4,則關(guān)于x的一元二次方程x2+4x+k=0的根的情況是( 。
A. 沒有實數(shù)根 B. 有兩個相等的實數(shù)根
C. 有兩個不相等的實數(shù)根 D. 無法判斷
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).
(1)作出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出A1的坐標;
(2)作出△ABC繞點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2,并求出C2所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形三條邊大小之間存在一定的關(guān)系,以下列各組線段為邊,能組成三角形的是( )
A.2 cm,3 cm,5 cm
B.5 cm,6 cm,10 cm
C.1 cm,1 cm,3 cm
D.3 cm,4 cm,9 cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com