【題目】如圖,點(diǎn)O在直線AB上,OC⊥AB .在RtΔODE中,∠ODE=90°,∠DOE=30°,先將ΔODE一邊OE與OC重合(如圖1),然后將ΔODE繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)(如圖2),當(dāng)OE與OC 重合時(shí)停止旋轉(zhuǎn).
(1)當(dāng)∠AOD=80°時(shí),則旋轉(zhuǎn)角∠COE的大小為____________ ;
(2)當(dāng)OD在OC與OB之間時(shí),求∠AOD∠COE的值;
(3)在ΔODE的旋轉(zhuǎn)過(guò)程中,若∠AOE=4∠COD時(shí),求旋轉(zhuǎn)角∠COE的大小.
【答案】(1)20;(2)60°;(3)6°或70°.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì),求出旋轉(zhuǎn)角的度數(shù),即可得到答案;
(2)由旋轉(zhuǎn)的性質(zhì)可知,,由(1)知,根據(jù)角的和差關(guān)系,即可得到∠AOD∠COE的值;
(3)根據(jù)題意,可分為兩種情況進(jìn)行①OD在OA與OC之間時(shí);②OD在OC與OB之間時(shí);設(shè)∠COE為x,根據(jù)角的和差關(guān)系列出等式,分別求出答案即可.
解:(1)由圖1可知,∠AOD=,
如圖2,當(dāng)∠AOD=80°時(shí),有:
∠COE=80°60°=20°,
故答案為:20°.
(2)如圖:由(1)知,,
由旋轉(zhuǎn)的性質(zhì),可知,
∴;
(3)根據(jù)題意,設(shè)∠COE為x,則
①如圖,當(dāng)OD在OA與OC之間時(shí),
∴∠AOE=90°+x,∠COD=30°,
∵∠AOE=4∠COD,
∴,
解得:;
②如圖,當(dāng)OD在OC與OB之間時(shí),
∴∠AOE=90°+x,∠COD=,
∵∠AOE=4∠COD,
∴,
解得:;
∴旋轉(zhuǎn)角∠COE的大小為:6°或70°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,表中給出的是某月的月歷,任意選取“H”型框中的7個(gè)數(shù)(如陰影部分所示),請(qǐng)你運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)來(lái)研究,發(fā)現(xiàn)這7個(gè)數(shù)的和不可能的是()
A.63B.70C.92D.105
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A,B在數(shù)軸上表示的數(shù)如圖所示. 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸向右以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到點(diǎn)B,再?gòu)狞c(diǎn)B以同樣的速度運(yùn)動(dòng)到點(diǎn)A停止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,解答下列問(wèn)題.
(1)當(dāng)t=2時(shí),AP= 個(gè)單位長(zhǎng)度,當(dāng)t=6時(shí),AP= 個(gè)單位長(zhǎng)度;
(2)直接寫(xiě)出整個(gè)運(yùn)動(dòng)過(guò)程中AP的長(zhǎng)度(用含t的代數(shù)式表示);
(3)當(dāng)AP=6個(gè)單位長(zhǎng)度時(shí),求t的值;
(4)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段AB的3等分點(diǎn)時(shí),t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若和是同類(lèi)項(xiàng),則m=_____,n=_________。
(2)單項(xiàng)式的系數(shù)是_______,次數(shù)是_______。
(3)多項(xiàng)式是_______次_______項(xiàng)式,其中第二項(xiàng)的系數(shù)是________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,的半徑是5,點(diǎn)A為上一點(diǎn),軸于點(diǎn)軸于點(diǎn)C,若四邊形ABOC的面積為12,寫(xiě)出一個(gè)符合條件的點(diǎn)A的坐標(biāo)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過(guò)或不足的千克數(shù)分別用正、負(fù)數(shù)來(lái)表示,記錄如下:
⑴20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
⑵與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過(guò)或不足多少千克?
⑶若白菜每千克售價(jià)1.6元,則出售這20筐白菜可賣(mài)多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.平面直角坐標(biāo)系的原點(diǎn)O在格點(diǎn)上, 軸、軸都在網(wǎng)格線上.線段AB的端點(diǎn)A、B在格點(diǎn)上.
(1)將線段AB繞點(diǎn)O逆時(shí)針90°得到線段A1B1,請(qǐng)?jiān)趫D中畫(huà)出線段A1B1;
(2)在(1)的條件下,線段A2B2與線段A1B1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng),請(qǐng)?jiān)趫D中畫(huà)出線段A2B2;
(3)在(1)、(2)的條件下,點(diǎn)P是此平面直角坐標(biāo)系內(nèi)的一點(diǎn),當(dāng)以點(diǎn)A、B、B2、P為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)寫(xiě)出一個(gè)滿(mǎn)足條件的m的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線y=(x>0)經(jīng)過(guò)△OAB的頂點(diǎn)A和OB的中點(diǎn)C,AB∥x軸,點(diǎn)A的坐標(biāo)為(2,3),BE⊥x軸,垂足為E.
(1)確定k的值;
(2)若點(diǎn)D(3,m)在雙曲線上,求直線AD的解析式;
(3)計(jì)算△OAB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com