【題目】如圖,補(bǔ)充下列結(jié)論和依據(jù).
∵∠ACE=∠D(已知),
∴_____∥______(______________________ ).
∵∠ACE=∠FEC(已知),
∴______∥______(_ ___ _______).
∵∠AEC=∠BOC(已知),
∴_____∥______(___ _____________________).
∵∠BFD+∠FOC=180°(已知),
∴_____∥______(_____ ____________________).
【答案】CE,DF,同位角相等兩直線平行;EF,AD,內(nèi)錯(cuò)角相等,兩直線平行;AE,BF,同位角相等,兩直線平行;CE,DF,同旁內(nèi)角互補(bǔ),兩直線平行.
【解析】
根據(jù)平行線的判定依次進(jìn)行推理即可得出答案.
解:∵∠ACE=∠D(已知),
根據(jù)同位角相等兩直線平行,
∴CE∥DF.
∵∠ACE=∠FEC,
根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,
∴EF∥AD.
∵∠AEC=∠BOC,
根據(jù)同位角相等,兩直線平行,
∴AE∥BF.
根據(jù)∠BFD+∠FOC=180°,
根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行,
∴CE∥DF.
故答案為:CE,DF,同位角相等兩直線平行;EF,AD,內(nèi)錯(cuò)角相等,兩直線平行;AE,BF,同位角相等,兩直線平行;CE,DF,同旁內(nèi)角互補(bǔ),兩直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB和CD相交于點(diǎn)O,OE把∠AOC分成兩部分,且∠AOE∶∠EOC=2∶5
(1)如圖,若∠BOD=70°,求∠BOE
(2)如圖,若OF平分∠BOE,∠BOF=∠AOC+10°,求∠EOF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連結(jié)OE.下列結(jié)論:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結(jié)論有______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】濟(jì)南市地鐵1號(hào)線于2019年1月1日起正式通車,在修建過(guò)程中,技術(shù)人員不斷改進(jìn)技術(shù),提高工作效率,如在打通一條長(zhǎng)600米的隧道時(shí),計(jì)劃用若干小時(shí)完成,在實(shí)際工作過(guò)程中,每小時(shí)打通隧道長(zhǎng)度是原計(jì)劃的1.2倍,結(jié)果提前2小時(shí)完成任務(wù).
(1)求原計(jì)劃每小時(shí)打通隧道多少米?
(2)如果按照這個(gè)速度下去,后面的360米需要多少小時(shí)打通?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程:
①的解x= .
②的解x= .
③的解x= .
④的解x= .
…
(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫(xiě)出⑤,⑥個(gè)方程及它們的解.
(2)請(qǐng)你用一個(gè)含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)D為等腰直角△ABC內(nèi)一點(diǎn),∠ACB=90°,AD=BD,∠BAD=30°,E為AD延長(zhǎng)線上的一點(diǎn),且CE=CA,若點(diǎn)M在DE上,且DC=DM.則下列結(jié)論中:①∠ADB=120°;②△ADC≌△BDC;③線段DC所在的直線垂直平分線AB;④ME=BD;正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,點(diǎn)D在BC上,且AD=AE.
(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度數(shù)?
(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度數(shù)?
(3)猜想∠EDC與∠BAD的數(shù)量關(guān)系?(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小穎在一張紙上畫(huà)一條數(shù)軸,并在數(shù)軸上標(biāo)出、、三個(gè)點(diǎn),點(diǎn)表示的數(shù)是,點(diǎn)在原點(diǎn)的右邊且與點(diǎn)相距個(gè)單位長(zhǎng)度.
()點(diǎn)表示的數(shù)是__________.
()將這張紙對(duì)折,此時(shí)點(diǎn)與表示的點(diǎn)剛好重合,折痕與數(shù)軸交于點(diǎn),求點(diǎn)表示的數(shù).
()若點(diǎn)到點(diǎn)和點(diǎn)的距離之和為,求點(diǎn)所表示的數(shù).
()點(diǎn)和點(diǎn)同時(shí)從初始位置沿?cái)?shù)軸向左運(yùn)動(dòng),它們的速度分別是每秒個(gè)單位長(zhǎng)度和每秒個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間是秒.是否存在的值,使秒后點(diǎn)到原點(diǎn)的距離與點(diǎn)到原點(diǎn)的距離相等?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,EG、EM、FM分別平分∠AEF,∠BEF,∠EFD,則圖中與∠DFM相等的角(不含它本身)的個(gè)數(shù)為( ).
A. 7B. 6C. 5D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com