【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結論__________(填編號).
【答案】(1)(2)(3)
【解析】根據(jù)垂直定義、角平分線的性質(zhì)、直角三角形的性質(zhì)求出∠POE、∠BOF、∠BOD、∠BOE、∠DOF等角的度數(shù),即可對①②③④進行判斷.
①∵AB∥CD,
∴∠BOD=∠ABO=a°,
∴∠COB=180°﹣a°=(180﹣a)°,
又∵OE平分∠BOC,
∴∠BOE=∠COB=(180﹣a)°.故①正確;
②∵OF⊥OE,
∴∠EOF=90°,
∴∠BOF=90°﹣(180﹣a)°=a°,
∴∠BOF=∠BOD,
∴OF平分∠BOD所以②正確;
③∵OP⊥CD,
∴∠COP=90°,
∴∠POE=90°﹣∠EOC=a°,
∴∠POE=∠BOF; 所以③正確;
∴∠POB=90°﹣a°,
而∠DOF=a°,所以④錯誤.
故答案為:①②③.
“點睛”本題考查了平行線的性質(zhì):兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,同位角相等.解答此題要注意將垂直、平行、角平分線的定義結合應用,弄清圖中線段和角的關系,再進行解答.
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級共有450名學生,為了了解該年級學生的數(shù)學解題能力情況,該校數(shù)學興趣小組隨機抽取了90人進行調(diào)查分析,并將抽取的學生的數(shù)學解題成績進行分組,繪制如下頻數(shù)分布表和成績分布扇形統(tǒng)計圖(圖1):
該校90名學生數(shù)學解題成績頻數(shù)分布表
(1)根據(jù)抽樣調(diào)查的結果,將估計出該校九年級450名學生數(shù)學解題成績情況在圖2中繪制成條形統(tǒng)計圖:
(2)請你結合上述統(tǒng)計的結果,提出一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解關于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是( 。
A. (x﹣1)2=4 B. (x+1)2=4 C. (x﹣1)2=16 D. (x+1)2=16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com