精英家教網 > 初中數學 > 題目詳情

【題目】已知關于x的一元二次方程x2+(m+3)xm+1=0.

(1)求證:無論m取何值,原方程總有兩個不相等的實數根;

(2)x1x2是原方程的兩根,且|x1x2|=2,求m的值.

【答案】(1)證明見解析;(2)m1=1,m2=-3.

【解析】

試題(1)根據關于x的一元二次方程x2+m+3x+m+1=0的根的判別式△=b2﹣4ac的符號來判定該方程的根的情況;

2)根據根與系數的關系求得x1+x2=﹣m+3),x1x2=m+1;然后由已知條件“|x1﹣x2|=2可以求得(x1﹣x22=x1+x22﹣4x1x2=8,從而列出關于m的方程,通過解該方程即可求得m的值;最后將m值代入原方程并解方程.

試題解析: 1∵△=m+32﹣4m+1=m+12+4,

無論m取何值,(m+12+4恒大于0,

原方程總有兩個不相等的實數根.

2∵x1x2是原方程的兩根,

∴x1+x2=﹣m+3),x1x2=m+1

∵|x1﹣x2|=2

x1﹣x22=22,

x1+x22﹣4x1x2=8

∴[﹣m+3]2﹣4m+1=8∴m2+2m﹣3=0,

解得:m1=﹣3,m2=1

m=﹣3時,原方程化為:x2﹣2=0,

解得:x1=x2=﹣,

m=1時,原方程化為:x2+4x+2=0

解得:x1=﹣2+x2=﹣2﹣

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C90°,以A為圓心,任意長為半徑畫弧,分別交AC,AB于點M,N,再分別以M,N為圓心,大于MN長為半徑畫弧,兩弧交于點O,作射線AO,交BC于點E.已知CE3,BE5,則AC的長為(  )

A.8B.7C.6D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,線段AB和射線BM交于點B

1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)

①在射線BM上作一點C,使AC=AB;

②作∠ABM 的角平分線交ACD點;

③在射線CM上作一點E,使CE=CD,連接DE.

2)在(1)所作的圖形中,猜想線段BDDE的數量關系,并證明之.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖 1,在△ ABC中,∠ACB = 2∠B, ∠BAC的平分線AOBC于點D,HAO上一動點,過點H作直線l⊥ AOH,分別交直線AB、ACBC于點N、E、M

1)當直線l經過點C(如圖 2),求證:NH = CH

2)當MBC中點時,寫出CECD之間的等量關系,并加以證明;

3)請直接寫出BN、CECD之間的等量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場銷售一批襯衫,平均每天可售出件,每件盈利元.為了擴大銷售,增加盈利,商場決定采取適當的降價措施.經調查發(fā)現,在一定范圍內,襯衫的單價每下降元,商場平均每天可多售出件.

如果商場通過銷售這批襯衫每天獲利元,那么襯衫的單價應下降多少元?

當每件襯衫的單價下降多少元時,每天通過銷售襯衫獲得的利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數根,下列判斷正確的是( 。

A. 1一定不是關于x的方程x2+bx+a=0的根

B. 0一定不是關于x的方程x2+bx+a=0的根

C. 1和﹣1都是關于x的方程x2+bx+a=0的根

D. 1和﹣1不都是關于x的方程x2+bx+a=0的根

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEFABBCF,交ACE,過點OODBCD,下列四個結論:

①∠AOB90°+C;

AE+BFEF

③當∠C90°時,E,F分別是ACBC的中點;

④若ODa,CE+CF2b,則SCEFab

其中正確的是( 。

A.①②B.③④C.①②④D.①③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形網格中,每個小正方形的邊長都為1,網格中有一個格點ABC(即三角形的頂點都在格點上).

1ABC的面積為__________;

2)在圖中作出ABC關于直線MN的對稱圖形A′B′C′.

3)利用網格紙,在MN上找一點P,使得PB+PC的距離最短.( 保留痕跡)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象如圖所示,有下列個結論:

;②;③;④,(的實數);,其中正確的結論有________

查看答案和解析>>

同步練習冊答案