分析 先證明△BAD≌△CAD得∠B=∠C,BD=DC,再證明△BDE≌△CDF即可.
解答 證明:∵AD平分∠BAC,
∴∠BAD=∠CAD,
在△ADB和△ADC中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAD}\\{AD=AD}\end{array}\right.$,
∴△BAD≌△CAD,
∴∠B=∠C,BD=DC,
在△BDE和△CDF中,
$\left\{\begin{array}{l}{∠B=∠C}\\{BD=CD}\\{∠BDE=∠CDF}\end{array}\right.$,
∴△BDE≌△CDF,
∴BE=CF,
∵AB=AC,
∴AE=AF.
點評 本題考查全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵,本題用了兩次全等,屬于中考?碱}型.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 4cm | B. | 5cm | C. | 4$\sqrt{2}$cm | D. | 3cm |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com