【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均落在格點上.
(1)△ABC的面積等于 ;
(2)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明) .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=24,AC=18,D是AC上一點,AD=6,在AB上取一點E,使A、D、E三點組成的三角形與△ABC相似,則AE的長為( )
A.8B.C.8或D.8或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人“五一”放假期間去登盤山掛月峰,甲先開車沿小路開到了距離登山入口100米的地方后,開始以10米/分鐘的登山上升速度徒步登山;甲開始徒步登山同時,乙直接從登山入口開始徒步登山,起初乙以15米/分鐘的登山上升速度登山,兩分鐘后得知甲已經(jīng)在半山腰,于是乙以甲登山上升速度的3倍提速.兩人相約只登到距地面高度為300米的地方,設(shè)兩人徒步登山時間為(分鐘)
(Ⅰ)根據(jù)題意,填寫下表:
徒步登山時間/時間 | 2 | 3 | 4 | 5 | … |
甲距地面高度/米 | 120 | ______ | 140 | ______ | … |
乙距地面高度/米 | 30 | 60 | ______ | ______ | … |
(Ⅱ)請分別求出甲、乙兩人徒步登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式;
(Ⅲ)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是直角邊長為1cm的等腰直角三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當(dāng)點P到達(dá)點B時,P、Q兩點停止運(yùn)動,設(shè)點P的運(yùn)動時間為t(s),解答下列各問題:
(1)當(dāng)t為何值時,△PBQ是直角三角形?
(2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時刻t,使四邊形APQC的面積是△ABC面積的二分之一?如果存在,求出t的值;不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線表示固定支架,垂直水平桌面于點,點為旋轉(zhuǎn)點,可轉(zhuǎn)動,當(dāng)繞點順時針旋轉(zhuǎn)時,投影探頭始終垂直于水平桌面,經(jīng)測量:,,,.(結(jié)果精確到0.1)
(1)如圖2,,.
①填空:_________°;
②求投影探頭的端點到桌面的距離.
(2)如圖3,將(1)中的向下旋轉(zhuǎn),當(dāng)投影探頭的端點到桌面的距離為時,求的大。▍⒖紨(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為原點,拋物線經(jīng)過點,對稱軸為直線,點關(guān)于直線的對稱點為點.過點作直線軸,交軸于點.
(Ⅰ)求該拋物線的解析式及對稱軸;
(Ⅱ)點在軸上,當(dāng)的值最小時,求點的坐標(biāo);
(Ⅲ)拋物線上是否存在點,使得,若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計劃購買某種樹苗綠化校園,甲、乙兩林場這種樹苗的售價都是每棵20元,又各有不同的優(yōu)惠方案,甲林場:若一次購買20棵以上,售價是每棵18元;乙林場:若一次購買10棵以上,超過10棵部分打8.5折。設(shè)學(xué)校一次購買這種樹苗x棵(x是正整數(shù)).
(Ⅰ)根據(jù)題意填寫下表:
學(xué)校一次購買樹苗(棵) | 10 | 15 | 20 | 40 |
在甲林場實際花費(元) | 200 | 300 | ||
在乙林場實際花費(元) | 200 | 370 | 710 |
(Ⅱ)學(xué)校在甲林場一次購買樹苗,實際花費記為(元),在乙林場一次購買樹苗,實際花費記為(元),請分別寫出與x的函數(shù)關(guān)系式;
(Ⅲ)當(dāng)時,學(xué)校在哪個林場一次購買樹苗,實際花費較少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點A(2,0),點B(0,),點O(0,0).△AOB繞著O順時針旋轉(zhuǎn),得△A'OB',點A、B旋轉(zhuǎn)后的對應(yīng)點為A',B',記旋轉(zhuǎn)角為α.
(Ⅰ)如圖1,A'B'恰好經(jīng)過點A時,求此時旋轉(zhuǎn)角α的度數(shù),并求出點B'的坐標(biāo);
(Ⅱ)如圖2,若0°<α<90°,設(shè)直線AA'和直線BB'交于點P,求證:AA'⊥BB';
(Ⅲ)若0°<α<360°,求(Ⅱ)中的點P縱坐標(biāo)的最小值(直接寫出結(jié)果即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com