解:(1)∵拋物線y=ax
2+b的圖象經(jīng)過點(diǎn)A(4,4)和點(diǎn)B(0,-4),
∴
,解得:
,
∴拋物線的解析式為:
;…(3分)
(2)過點(diǎn)A作AE⊥x軸于E,連接AB交x軸于點(diǎn)E,
OB=AE=4,∠MOB=∠AEM=90°,∠OMB=∠AME,
∴在△OMB與△EMA中,
∴
∴△OMB≌△EMA,
∴MB=MA,OM=ME=
,
∴以M為圓心,MB為半徑的⊙M,即為以AB為直徑的圓.
由勾股定理得
,
∴點(diǎn)C的坐標(biāo)為
,
.
(3)如圖2,當(dāng)點(diǎn)C在點(diǎn)(4,0)的右側(cè)時(shí),
作AE⊥x軸于E,DF⊥x軸于F,
∵△ACD為等腰直角三角形,
∴AC=DC,∠ACD=90°,即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
又∵∠DFC=∠AEC=90°,
在△DFC與△CEA中,
∴△DFC≌△CEA,
∴EC=DF,F(xiàn)C=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
當(dāng)點(diǎn)C與點(diǎn)(4,0)的重合時(shí),點(diǎn)D與原點(diǎn)重合;
當(dāng)點(diǎn)C在點(diǎn)(4,0)的左側(cè)時(shí),同理可得OF=DF;
∴綜上所述,點(diǎn)D在直線y=-x的圖象上.
設(shè)點(diǎn)C的坐標(biāo)為(m,0),
則點(diǎn)D的坐標(biāo)為(m-4,4-m),(13分)
又∵點(diǎn)D在拋物線
的圖象上,
∴
,
解得:m
1=0,m
2=6,
∴當(dāng)點(diǎn)C的坐標(biāo)為(6,0)或(0,0)時(shí),
點(diǎn)D落在拋物線
的圖象上.
分析:(1)根據(jù)拋物線y=ax
2+b的圖象經(jīng)過點(diǎn)A(4,4)和點(diǎn)B(0,-4),利用待定系數(shù)法求解二次函數(shù)的解析式即可.
(2)過點(diǎn)A作AE⊥x軸于E,連接AB交x軸于點(diǎn)E,得到△OMB≌△EMA后得到MB=MA,OM=ME=
,然后求得線段MB的長(zhǎng)后即可表示出點(diǎn)C的坐標(biāo);
(3)分點(diǎn)C在點(diǎn)(4,0)的右側(cè)時(shí)和當(dāng)點(diǎn)C在點(diǎn)(4,0)的左側(cè)時(shí)兩種情況分類討論即可確定答案.
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合知識(shí),特別是題目中涉及到的分類討論的數(shù)學(xué)思想更是中考中的高頻考點(diǎn),同時(shí)也是一個(gè)易錯(cuò)點(diǎn).