(1999•西安)如圖,海上有一座燈塔P,在它周?chē)?海里內(nèi)有暗礁,一艘客輪以9海里每小時(shí)的速度由西向東航行,行到A處測(cè)得燈塔P在它的北偏東60°.繼續(xù)行駛10分鐘后,到達(dá)B處,又測(cè)得燈塔P在它的北偏東45°.問(wèn)客輪不改變方向,繼續(xù)前進(jìn)有無(wú)觸礁的危險(xiǎn)?

【答案】分析:比較容易求得AB的長(zhǎng),設(shè)PC=x,在直角△PAC與直角△PBC中,根據(jù)三角函數(shù)即可用x表示出BC與AC的長(zhǎng),根據(jù)AC-BC=AB即可得到一個(gè)關(guān)于x的方程,解方程即可.
解答:解:設(shè)PC=x,根據(jù)題意,得
AB=×9=(海里)(2分)
BC=PC=x
Rt△PCA中,AC=,∠PAC=30°
=tan30°(5分)
解得:x=(7分)
答:客輪沿原方向行駛有觸礁的危險(xiǎn).
點(diǎn)評(píng):把求線(xiàn)段長(zhǎng)的問(wèn)題轉(zhuǎn)化為方程問(wèn)題是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:1999年全國(guó)中考數(shù)學(xué)試題匯編《圓》(05)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿(mǎn)足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過(guò)C作⊙D的切線(xiàn)EF交x軸于E,交y軸于F,求直線(xiàn)EF的解析式;
(3)拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸過(guò)C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿(mǎn)足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過(guò)C作⊙D的切線(xiàn)EF交x軸于E,交y軸于F,求直線(xiàn)EF的解析式;
(3)拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸過(guò)C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿(mǎn)足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過(guò)C作⊙D的切線(xiàn)EF交x軸于E,交y軸于F,求直線(xiàn)EF的解析式;
(3)拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸過(guò)C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿(mǎn)足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過(guò)C作⊙D的切線(xiàn)EF交x軸于E,交y軸于F,求直線(xiàn)EF的解析式;
(3)拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸過(guò)C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年陜西省西安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿(mǎn)足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過(guò)C作⊙D的切線(xiàn)EF交x軸于E,交y軸于F,求直線(xiàn)EF的解析式;
(3)拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸過(guò)C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線(xiàn)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案