如圖,AB是⊙O的直徑,P點(diǎn)在AB的延長(zhǎng)線上,弦CD⊥AB于E,∠PCE=2∠BDC.
(1)求證:PC是⊙O的切線;
(2)若AE:EB=2:1,PB=6,求弦CD的長(zhǎng).
(1)證明:連接OC,
∵∠PCE=2∠BDC,
∴∠PCE=∠COB,
∵CD⊥AB,
∴∠COE+∠OCE=90°,
∴∠OCE+∠DCP=90°,
∴OC⊥PC,
∴PC是⊙O的切線.

(2)∵AE:EB=2:1,
∵CD⊥AB,OC⊥CP,
∴OC2=OP•OE,
設(shè)EB=x,則AE=2x,OE=
x
2
,OC=
3x
2
,
∴(
3x
2
2=(
3x
2
+6
x
2

解方程得:x1=0(舍去),x2=2,
∴OE=1,OC=3,
∴CE=
OC2-OE2
=2
2

∴CD=2CE=4
2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,過點(diǎn)P作⊙O的兩條割線分別交⊙O于點(diǎn)A、B和點(diǎn)C、D,已知PA=3,BA=PC=2,則PD的長(zhǎng)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知PAC為⊙O的割線,連接PO交⊙O于B,PB=2,OP=7,PA=AC,則PA的長(zhǎng)為( 。
A.
7
B.2
3
C.
14
D.3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知弦AB與半徑相等,連接OB,并延長(zhǎng)使BC=OB.
(1)問AC與⊙O有什么關(guān)系.并證明你的結(jié)論的正確性.
(2)請(qǐng)你在⊙O上找出一點(diǎn)D,使AD=AC(自己完成作圖,并證明你的結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為圓O的直徑,C為圓O上一點(diǎn),AD和過C點(diǎn)的直線互相垂直,垂足為D,且AC平分∠DAB,延長(zhǎng)AB交DC于點(diǎn)E.
(1)判定直線DE與圓O的位置關(guān)系,并說明你的理由;
(2)求證:AC2=AD•AB;
(3)以下兩個(gè)問題任選一題作答.(若兩個(gè)問題都答,則以第一問的解答評(píng)分)
①若CF⊥AB于點(diǎn)F,試討論線段CF、CE和DE三者的數(shù)量關(guān)系;
②若EC=5
3
,EB=5,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,AD是圓O的直徑,BC切圓O于點(diǎn)D,AB、AC與圓O相交于點(diǎn)E、F.

(1)求證:AE•AB=AF•AC;
(2)如果將圖1中的直線BC向上平移與圓O相交得圖2,或向下平移得圖3,此時(shí),AE•AB=AF•AC是否仍成立?若成立,請(qǐng)證明,若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,PA是⊙O的切線,過點(diǎn)B作BCOP交⊙O于點(diǎn)C,連接AC.
(1)求證:△ABC△POA;
(2)若AB=2,PA=
2
,求BC的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交AD于F,交BC于G,延長(zhǎng)BA交圓于E.
(1)若ED與⊙A相切,試判斷GD與⊙A的位置關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件不變的情況下,若GC=CD,求∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系xoy中,O是坐標(biāo)原點(diǎn),點(diǎn)A在x正半軸上,OA=12
3
cm,點(diǎn)B在y軸的正半軸上,OB=12cm,動(dòng)點(diǎn)P從點(diǎn)O開始沿OA以2
3
cm/s的速度向點(diǎn)A移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開始沿AB以4cm/s的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)R從點(diǎn)B開始沿BO以2cm/s的速度向點(diǎn)O移動(dòng).如果P、Q、R分別從O、A、B同時(shí)移動(dòng),移動(dòng)時(shí)間為t(0<t<6)s.
(1)求∠OAB的度數(shù).
(2)以O(shè)B為直徑的⊙O′與AB交于點(diǎn)M,當(dāng)t為何值時(shí),PM與⊙O′相切?
(3)寫出△PQR的面積S隨動(dòng)點(diǎn)移動(dòng)時(shí)間t的函數(shù)關(guān)系式,并求s的最小值及相應(yīng)的t值.
(4)是否存在△APQ為等腰三角形?若存在,求出相應(yīng)的t值;若不存在請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案