【題目】如圖1,在ABCD中,,,,射線AE平分動點P的速度沿AD向終點D運動,過點PAE于點Q,過點P,過點Q,交PM于點設點P的運動時間為,四邊形APMQ與四邊形ABCD重疊部分面積為

______用含t的代數(shù)式表示

當點M落在CD上時,求t的值.

St之間的函數(shù)關系式.

如圖2,連結AM,交PQ于點G,連結AC、BD交于點H,直接寫出t為何值時,GH與三角形ABD的一邊平行或共線.

【答案】(1) (2) (3)

(4)4s時,GH與三角形ABD的一邊平行或共線

【解析】

(1)由題意得△APQ是直角三角形,∠PAQ=60°,利用正切值即可求得PQ的值;

(2)如圖2,由題意可知∠D=60°,四邊形APMQ為平行四邊形,得∠DPQ=60°,所以△DPM是等邊三角形,則DP=MP=AQ=2PA,即6-t=2t,解得t=2;

(3)如圖1,3,4,分,,三種情況討論,分別計算出三種情況下的重疊部分面積為t的函數(shù)關系式即可;

(4)如圖5,6,7,分別計算出當GHBD重合,時,三種情況下t的值即可.

如圖1中,

AE平分,

,

,

,

.

故答案為

如圖2中,

四邊形ABCD是平行四邊形,

,

,,

,四邊形APMQ是平行四邊形,

是等邊三角形,,

,

,

時,如圖1中,重疊部分是平行四邊形APMQ;

如圖3中,當時,重疊部分五邊形APSTQ,

易證△MST為等邊三角形,則MT=MPPS=MPDP=2t﹣(6﹣t)=3t﹣6,

如圖4中,當時,重疊部分是四邊形PSTA

綜上所述,

如圖5中,當時,

M在線段CD上,此時

如圖6中,當GHBD重合時,作DA的延長線于T

中,,,

,,

,

,

解得

如圖7中,當時,易證B,C,Q共線,

可得是等邊三角形,,

,

綜上所述,4s時,GH與三角形ABD的一邊平行或共線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,高ADBE交于點H,∠ABC=45°,BE平分∠ABC,下列結論:①∠DAC= 22.5°;②BH= 2CE; ③若連結CH,CHAB;④若CD=1,AH=2;其中正確的有( )

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點CA重合,點D落到D′處,折痕為EF

1)求證:△ABE≌△AD′F;

2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A﹣1,0),C2,3)兩點,與y軸交于點N.其頂點為D

1)拋物線及直線AC的函數(shù)關系式;

2)設點M3m),求使MN+MD的值最小時m的值;

3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點EEF∥BD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;

4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀、思考、解決問題:

1)如圖(1)兩個函數(shù)的圖象交于點,的坐標是否滿足這兩個函數(shù)式?即是方程的解嗎?是方程的解嗎?答:(是、不是)這就是說:函數(shù)圖象的交點坐標(是、不是)方程組的解;反之,方程組的解(是、不是)函數(shù)圖象的交點坐標.

2)根據(jù)圖(2)寫出方程組的解是:____________

3)已知兩個一次函數(shù)

①求這兩個函數(shù)圖象的交點坐標;

②在圖(3)的坐標系中畫出這兩個函數(shù)的圖象

③根據(jù)圖象寫出當時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初二班同學從學校出發(fā)去某自然保護區(qū)研學旅行,一部分乘坐大客車先出發(fā),余下的幾人20分鐘后乘坐小轎車沿同一路線出行大客車中途停車等候,小轎車趕上來之后,大客車以出發(fā)時速度的繼續(xù)行駛,小轎車保持原速度不變小轎車司機因路線不熟錯過了景點入口,再原路提速返回,恰好與大客車同時到達景點入口兩車距學校的路程單位:千米和行駛時間單位:分鐘之間的函數(shù)關系如圖所示.

請結合圖象解決下面問題:

學校到景點的路程為______千米,大客車途中停留了______分鐘,______千米;

在小轎車司機駛過景點入口時,大客車離景點入口還有多遠?

若大客車一直以出發(fā)時的速度行駛,中途不再停車,那么小轎車折返后到達景點入口,需等待______分鐘,大客車才能到達景點入口.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,∠A=140°,D=80°.

(1)如圖1,若∠B=C,試求出∠C的度數(shù);

(2)如圖2,若∠ABC的角平分線BEDC于點E,且BEAD,試求出∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若ABC內一點P,滿足∠PAB=∠PBC=∠PCAα,則稱點PABC的布洛卡點.通過研究一些特殊三角形中的布洛卡點,得到如下兩個結論:

①若∠BAC90°,則必有∠APC90°;②若ABAC,則必有∠APB=∠BPC

對于這兩個結論,下列說法正確的是( 。

A.①對,②錯B.①錯,②對C.①,②均錯D.①,②均對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的方程有實數(shù)根,則滿足________

查看答案和解析>>

同步練習冊答案