【題目】如圖1,在□ABCD中,,,,射線AE平分動點P以的速度沿AD向終點D運動,過點P作交AE于點Q,過點P作,過點Q作,交PM于點設點P的運動時間為,四邊形APMQ與四邊形ABCD重疊部分面積為
______用含t的代數(shù)式表示
當點M落在CD上時,求t的值.
求S與t之間的函數(shù)關系式.
如圖2,連結AM,交PQ于點G,連結AC、BD交于點H,直接寫出t為何值時,GH與三角形ABD的一邊平行或共線.
【答案】(1) (2) (3)
(4)或或4s時,GH與三角形ABD的一邊平行或共線
【解析】
(1)由題意得△APQ是直角三角形,∠PAQ=60°,利用正切值即可求得PQ的值;
(2)如圖2,由題意可知∠D=60°,四邊形APMQ為平行四邊形,得∠DPQ=60°,所以△DPM是等邊三角形,則DP=MP=AQ=2PA,即6-t=2t,解得t=2;
(3)如圖1,3,4,分,,三種情況討論,分別計算出三種情況下的重疊部分面積為與t的函數(shù)關系式即可;
(4)如圖5,6,7,分別計算出當,或GH與BD重合,或時,三種情況下t的值即可.
如圖1中,
,AE平分,
,
,
,
,
∴.
故答案為
如圖2中,
四邊形ABCD是平行四邊形,
,
,
,,
,四邊形APMQ是平行四邊形,
是等邊三角形,,
,
,
.
當時,如圖1中,重疊部分是平行四邊形APMQ,;
如圖3中,當時,重疊部分五邊形APSTQ,
易證△MST為等邊三角形,則MT=MP﹣PS=MP﹣DP=2t﹣(6﹣t)=3t﹣6,
故.
如圖4中,當時,重疊部分是四邊形PSTA.
則
綜上所述,.
如圖5中,當時,,
點M在線段CD上,此時.
如圖6中,當GH與BD重合時,作交DA的延長線于T.
在中,,,
,,
,
,
,
解得
如圖7中,當時,易證B,C,Q共線,
可得是等邊三角形,,
,
,
綜上所述,或或4s時,GH與三角形ABD的一邊平行或共線.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,高AD和BE交于點H,∠ABC=45°,BE平分∠ABC,下列結論:①∠DAC= 22.5°;②BH= 2CE; ③若連結CH,則CH⊥AB;④若CD=1,則AH=2;其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點C與A重合,點D落到D′處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.
(1)拋物線及直線AC的函數(shù)關系式;
(2)設點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀、思考、解決問題:
(1)如圖(1)兩個函數(shù)和的圖象交于點,的坐標是否滿足這兩個函數(shù)式?即是方程的解嗎?是方程的解嗎?答: ① (是、不是)這就是說:函數(shù)和圖象的交點坐標 ② (是、不是)方程組的解;反之,方程組的解 ③ (是、不是)函數(shù)和圖象的交點坐標.
(2)根據(jù)圖(2)寫出方程組的解是:____________
(3)已知兩個一次函數(shù)和.
①求這兩個函數(shù)圖象的交點坐標;
②在圖(3)的坐標系中畫出這兩個函數(shù)的圖象
③根據(jù)圖象寫出當時,的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初二班同學從學校出發(fā)去某自然保護區(qū)研學旅行,一部分乘坐大客車先出發(fā),余下的幾人20分鐘后乘坐小轎車沿同一路線出行大客車中途停車等候,小轎車趕上來之后,大客車以出發(fā)時速度的繼續(xù)行駛,小轎車保持原速度不變小轎車司機因路線不熟錯過了景點入口,再原路提速返回,恰好與大客車同時到達景點入口兩車距學校的路程單位:千米和行駛時間單位:分鐘之間的函數(shù)關系如圖所示.
請結合圖象解決下面問題:
學校到景點的路程為______千米,大客車途中停留了______分鐘,______千米;
在小轎車司機駛過景點入口時,大客車離景點入口還有多遠?
若大客車一直以出發(fā)時的速度行駛,中途不再停車,那么小轎車折返后到達景點入口,需等待______分鐘,大客車才能到達景點入口.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點E,且BE∥AD,試求出∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若△ABC內一點P,滿足∠PAB=∠PBC=∠PCA=α,則稱點P為△ABC的布洛卡點.通過研究一些特殊三角形中的布洛卡點,得到如下兩個結論:
①若∠BAC=90°,則必有∠APC=90°;②若AB=AC,則必有∠APB=∠BPC.
對于這兩個結論,下列說法正確的是( 。
A.①對,②錯B.①錯,②對C.①,②均錯D.①,②均對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com