【題目】某水果商行計劃購進(jìn)A、B兩種水果共200箱,這兩種水果的進(jìn)價、售價如下表所示:
價格 | 進(jìn)價(元/箱) | 售價(元/箱) |
A | 60 | 70 |
B | 40 | 55 |
(1)若該商行進(jìn)貸款為1萬元,則兩種水果各購進(jìn)多少箱?
(2)若商行規(guī)定A種水果進(jìn)貨箱數(shù)不低于B種水果進(jìn)貨箱數(shù)的 ,應(yīng)怎樣進(jìn)貨才能使這批水果售完后商行獲利最多?此時利潤為多少?
【答案】
(1)解:設(shè)A種水果進(jìn)貨x箱,則B種水果進(jìn)貨(200﹣x)箱,
60x+40(200﹣x)=10000,
解得,x=100,
200﹣x=100,
即A種水果進(jìn)貨100箱,B種水果進(jìn)貨100箱
(2)解:設(shè)A種水果進(jìn)貨x箱,則B種水果進(jìn)貨(200﹣x)箱,售完這批水果的利潤為w,
則w=(70﹣60)x+(55﹣40)(200﹣x)=﹣5x+3000,
∵﹣5<0,
∴w隨著x的增大而減小,
∵x≥ ,
解得,x≥50,
當(dāng)x=50時,w取得最大值,此時w=2750,
即進(jìn)貨A種水果50箱,B種水果150箱時,獲取利潤最大,此時利潤為2750元
【解析】(1)根據(jù)題意可以得到相應(yīng)的方程,從而可以得到兩種水果各購進(jìn)多少箱;(2)根據(jù)題意可以得到利潤與甲種水果的關(guān)系式和水果A與B的不等式,從而可以解答本題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)分別為A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo);
(2)畫出△ABC繞點(diǎn)A按逆時針旋轉(zhuǎn)90°后的△AB2C2 , 并寫出點(diǎn)C的對應(yīng)點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形ABC的直角邊AB=6,BC=8,將直角三角形ABC沿邊BC的方向平移到三角形DEF的位置,DE交AC于點(diǎn)G,BE=2,三角形CEG的面積為13.5,下列結(jié)論:
①三角形ABC平移的距離是4; ②EG=4.5;
③AD∥CF; ④四邊形ADFC的面積為6.
其中正確的結(jié)論是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, 是它的角平分線, 是上的一點(diǎn), , 分別平分, , ,垂足為點(diǎn).
求證:( ).().
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下面的說理過程補(bǔ)充完整:
已知:如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的關(guān)系,并說明理由.
解:∠AED=∠C.
理由:∵∠1+∠ADG=180°(平角定義),∠1+∠2=180°(已知).
∴∠2=∠ADG.(_____________)
∴EF∥AB(______________).
∴∠3=∠AED(_____________).
∵∠3=∠B(已知),
∴∠B=________(________________)
∴DE∥BC(__________________).
∴∠AED=∠C(_________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2x+3與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)請直接寫出點(diǎn)A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點(diǎn)E,使得△CDE的周長最小,求點(diǎn)E的坐標(biāo);
(3)如圖(2),F(xiàn)為直線AC上的動點(diǎn),在拋物線上是否存在點(diǎn)P,使得△AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,
求:(1)在圖(1)中∠B+∠D=?(2)在圖(2)中∠B+∠E1+∠D=?(3)在圖(3)中∠B+∠E1+∠E2+…+∠En﹣1+∠En+∠D=?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com