觀察:已知x≠1.
(1-x)(1+x+x2)=1-x3
(1-x)(1+x+x2+x3)=1-x4
猜想:(1-x)(1+x+x2+…+xn)=______
(1)根據(jù)你的猜想請(qǐng)你計(jì)算下列式子的值:
①(1-2)(1+2+22+23+24+25)=______
②2+22+23+24+…+2n=______
③(x-1)(x99+x98+x97+…+x2+x+1)=______
(2)通過(guò)以上規(guī)律請(qǐng)你進(jìn)行下面的探素:
①(a-b)(a+b)=______
②(a-b)(a2+ab+b2)=______
③(a-b)(a3+a2b+ab2+b3)=______
根據(jù)尋找的規(guī)律解答下列問(wèn):
(3)判斷22010+22009+22008+…+22+2+1的值的個(gè)位數(shù)是幾?并說(shuō)明你的理由.
解:(1-x)(1+x+x2+…+xn)=1-xn+1;
(1)①(1-2)(1+2+22+23+24+25)=1-26=1-64=-63;
②2+22+23+24+…+2n=2(1+2+22+23+24+…+2n-1)=-2(1-2)(1+2+22+23+24+…+2n-1)=-2(1-2n)=2n+1-2;
③(x-1)(x99+x98+x97+…+x2+x+1)=-(1-x)(1+x+x2+…+x99)=-(1-x100)=x100-1;
(2)①(a-b)(a+b)=a2-b2;
②(a-b)(a2+ab+b2)=a3-b3;
③(a-b)(a3+a2b+ab2+b3)=a4-b4;
(3)22010+22009+22008+…+22+2+1=-(1-2)(22010+22009+22008+…+22+2+1)=-(1-22011)=22011-1,
∵2011÷4=502…3,
而2的乘方的個(gè)位數(shù)是2、4、8、6的循環(huán),
∴22011-1的個(gè)位數(shù)為7.
故答案為1-xn+1;-63;2n+1-2;x100-1;a2-b2;a3-b3;a4-b4.
分析:根據(jù)題意易得(1-x)(1+x+x2+…+xn)=1-xn+1;(1)利用猜想的結(jié)論得到①(1-2)(1+2+22+23+24+25)=1-26=1-64=-63;②先變形2+22+23+24+…+2n=2(1+2+22+23+24+…+2n-1)=-2(1-2)(1+2+22+23+24+…+2n-1),然后利用上述結(jié)論寫出結(jié)果;③先變形得到(x-1)(x99+x98+x97+…+x2+x+1)=-(1-x)(1+x+x2+…+x99),然后利用上述結(jié)論寫出結(jié)果;
(2)根據(jù)規(guī)律易得)①(a-b)(a+b)=a2-b2;②(a-b)(a2+ab+b2)=a3-b3;③(a-b)(a3+a2b+ab2+b3)=a4-b4;
(3)由22010+22009+22008+…+22+2+1=-(1-2)(22010+22009+22008+…+22+2+1)=-(1-22011)=22011-1,根據(jù)2的乘方的個(gè)位數(shù)是2、4、8、6的循環(huán)和2011÷4=502…3,即可得到
22011-1的個(gè)位數(shù).
點(diǎn)評(píng):本題考查了整式的混合運(yùn)算:先進(jìn)行乘方運(yùn)算,然后進(jìn)行乘除運(yùn)算,再進(jìn)行加減運(yùn)算;有括號(hào)先算括號(hào).也考查了實(shí)數(shù)的運(yùn)算.