如圖(1),在□ABCD中,P是CD邊上的一點,AP與BP分別平分∠DAB和∠CBA。
【小題1】判斷△APB是什么三角形?證明你的結論;
【小題2】比較DP與PC的大。
【小題3】如圖(2)以AB為直徑作半圓O,交AD于點E,連結BE與AP交于點F,若AD=5cm,AP=8cm,求證△AEF∽△APB,并求tan∠AFE的值。
【小題1】△APB是直角三角形,理由如下:
∵在□ABCD中,AD∥BC,
∴∠DAB +∠ABC = 180°;
又∵AP與BP分別平分∠DAB和∠CBA,
∴∠PAB =,∠PBA =,
∴∠PAB+∠PBA=,
∴△APB是直角三角形;
【小題1】∵DC∥AB,
∴∠BAP =∠DPA.
∵∠DAP =∠PAB,
∴∠DAP =∠DPA,
∴DA = DP
同理證得CP=CB.
∴DP = PC
【小題1】∵AB是⊙O直徑,
∴∠AEB = 90°.
又(1)易知∠APB = 90°.
∴∠AEB =∠APB,
∵AP為角平分線,即∠EAF=∠PAB,
∴△AEF∽△APB,
由(2)可知DP =" PC" = AD,
∴ AB =" DC" =" 2AD" = 10cm,
在Rt△PAB中,(cm)
又△AEF∽△APB,
得∠AFE=∠ABP,
∴tan∠AFE = tan∠ABP=。
解析【小題1】可通過角的度數(shù)來判斷三角形APB的形狀.由于ABCD是平行四邊形,AD∥BC,那么同旁內(nèi)角∠DAB和∠CBA的和應該是180°,AP,BE平分∠DAB,∠ABP,于是∠PAB和∠ABP的和就應該是90°,即∠APB=90°,因此可得出三角形APB的形狀.
【小題1】可通過平行和角平分線,通過等角對等邊得出DP=AP,同理可證出PC=BC,根據(jù)平行四邊形的性質(zhì),AD=BC,可得出DP=PC.
【小題1】利用兩個角相等求出△AEF∽△APB,然后利用(2)求出PB的長度,在根據(jù)∠AFE=∠ABP,然后求出tan∠AFE的值.
科目:初中數(shù)學 來源: 題型:
3 | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
AE |
BE |
ED |
BE |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com