【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且tan∠ACO=2.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標.

【答案】
(1)解:過點A作AD⊥x軸,垂足為D

由A(n,6),C(﹣2,0)可得,

OD=n,AD=6,CO=2

∵tan∠ACO=2

=2,即 =2

∴n=1

∴A(1,6)

將A(1,6)代入反比例函數(shù),得m=1×6=6

∴反比例函數(shù)的解析式為

將A(1,6),C(﹣2,0)代入一次函數(shù)y=kx+b,可得

解得

∴一次函數(shù)的解析式為y=2x+4


(2)解:由 可得

解得x1=1,x2=﹣3

∵當x=﹣3時,y=﹣2

∴點B坐標為(﹣3,﹣2)


【解析】本題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,解決問題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式.求反比例函數(shù)與一次函數(shù)的交點坐標時,把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解,則兩者有交點,若方程組無解,則兩者無交點.(1)先過點A作AD⊥x軸,根據(jù)tan∠ACO=2,求得點A的坐標,進而根據(jù)待定系數(shù)法計算兩個函數(shù)解析式;(2)先聯(lián)立兩個函數(shù)解析式,再通過解方程求得交點B的坐標即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組:

請結(jié)合題意,完成本題的解答.

1)解不等式①,得 ,依據(jù)是:

2)解不等式③,得

3)把不等式①,②和③的解集在數(shù)軸上表示出來.

4)從圖中可以找出三個不等式解集的公共部分,得不等式組的解集

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD交于點O,且DEAC,CEBD.

(1)求證:四邊形OCED是菱形;

(2)若∠BAC=30°,AC=4,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘輪船位于燈塔C的北偏東30°方向上的A處,且A處距離燈塔C80海里,輪船沿正南方向勻速航行一段時間后,到達位于燈塔C的東南方向上的B處.

1)求燈塔C到達航線AB的距離;

2)若輪船的速度為20海里/時,求輪船從A處到B處所用的時間(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于一、三象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(2,m),點B的坐標為(n,﹣2),tan∠BOC=
(1)求該反比例函數(shù)和一次函數(shù)的解析式.
(2)求△BOC的面積.
(3)P是x軸上的點,且△PAC的面積與△BOC的面積相等,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點B的坐標為(m,﹣2).

(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園安全”受到社會的廣泛關(guān)注,某校政教處對部分學生就校園安全知識的了解程度,進行了隨機抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學生共有______名;

(2)請補全折線統(tǒng)計圖,并求出扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在平面直角坐標系中,、兩點的坐標分別為、,、分別是軸、軸上的點.如果以點、、為頂點的四邊形是平行四邊形,則的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A(,0),AB,AB=10,C0,b,,b滿足.Pt,0)是線段AO上一點(不包含A,O

1)當t=5時,求PBPC的值;

2)當PC+PB最小時,求t的值;

3)請根據(jù)以上的啟發(fā),解決如下問題:正數(shù)m,n滿足m+n=10,且正數(shù)=,則正數(shù)的最小值=________.

查看答案和解析>>

同步練習冊答案