如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF,

BD=CE。

   (1)求證:△DEF是等腰三角形;(3分)

   (2)當∠A=40°時,求∠DEF的度數(shù);(3分)

   (3)請你猜想:當∠A為多少度時,∠EDF+∠EFD=120°,并請說明理由。

(3分)

(1)證明∵AB=AC,∴∠B=∠C。

    在△BDE和△CEF中,   ∴△BDE≌△CEF(SAS)

∴DE=EF,∴△DEF是等腰三角形。

(2)解:∵∠DEC=∠B+∠BDE,即∠DEF+CEF=∠B+∠BDE

         由(1)知△BDE≌△CEF,則∠BDE=∠CEF。∴∠DEF=∠B。

         ∵∠A=40°,∴∠B=∠C==70°。

∴∠DEF=70°。

   (3)當∠A=60°時,∠EDF+∠EFD=120°,

        理由是:當∠EDF+∠EFD=120°時,則∠DEF=180°-120°=60°。

               ∴∠B=∠DEF=60°。

               ∴∠A=180°-∠B-∠C=180°-60°-60°=60°。

               ∴當∠A=60°時,∠EDF+∠EFD=120°。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案