【題目】揚州某風景區(qū)門票價格如圖所示,有甲、乙兩個旅行團隊,計劃在端午節(jié)期間到該景點游玩,兩團隊游客人數(shù)之和為100人,若乙團隊人數(shù)不超過40人,甲團隊人數(shù)不超過80人,設甲團隊人數(shù)為人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為元.

1)直接寫出關于的函數(shù)關系式,并寫出自變量的取值范圍;

2)計算甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約多少錢?

3)該景區(qū)每年11月、12月為淡季,景區(qū)決定在這兩個月實行門票打五折的優(yōu)惠(打折期間不售團體票),以吸引大量游客,提高景區(qū)收入;景區(qū)經(jīng)過調(diào)研發(fā)現(xiàn),隨著接待游客數(shù)的增加,景區(qū)的運營成本也隨之增加,景區(qū)運營成本(萬元)與兩個月游客總?cè)藬?shù)(萬人)之間滿足函數(shù)關系式:;兩個月游客總?cè)藬?shù)(萬人)滿足:,且淡季每天游客數(shù)基本相同;為了獲得最大利潤,景區(qū)決定通過網(wǎng)絡預約購票的方式控制淡季每天游客數(shù),請問景區(qū)的決定是否正確?并說明理由.(利潤門票收入景區(qū)運營成本)

【答案】1)當時,;(21800元;(3)利潤隨人數(shù)的增大而減小,故景區(qū)的決定是正確的

【解析】

(1)由乙團隊人數(shù)不超過40人,討論的取值范圍,得到函數(shù)解析式;

(2)由(1)在甲團隊人數(shù)不超過80人時,討論的最大值與聯(lián)合購票費用相減即可;

(3)根據(jù)題意列函數(shù)關系式,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

解:(1)由題意乙團隊人數(shù)為人,則,,

時,

(2)由(1)甲團隊人數(shù)不超過80人,

,∴增大而減小,

時,

當兩團隊聯(lián)合購票時購票費用為,

甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約元;

(3)正確.設利潤為元,根據(jù)題意得,

,∴拋物線的開口向下,有最大值,

,

的增大而減小,

∴利潤隨人數(shù)的增大而減小,故景區(qū)的決定是正確的.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,ADC=60°,AB=BC=1,則下列結(jié)論:

①∠CAD=30°BD=S平行四邊形ABCD=ABACOE=ADSAPO=,正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購進A、B兩種型號的低排量汽車,其中A型汽車的進貨單價比B型汽車的進貨單價多2萬元;花50萬元購進A型汽車的數(shù)量與花40萬元購進B型汽車的數(shù)量相同.

1)求A、B兩種型號汽車的進貨單價;

2)銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺)與售價x(萬元/臺)滿足函數(shù)關系yA=﹣x+20B型汽車的每周銷量yB(臺)與售價x(萬元/臺)滿足函數(shù)關系yB=﹣x+14,A型汽車的售價比B型汽車的售價高2萬元/臺.問A、B兩種型號的汽車售價各為多少時,每周銷售這兩種汽車的總利潤最大?最大利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為豐富學生的校園生活,準備一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需170元,購買2個足球和5個籃球共需260元.

1)購買一個足球、一個籃球各需多少元?(提示:列方程組解答)

2)根據(jù)該中學的實際情況,需一次性購買足球和籃球共46個,要求購買足球和籃球的總費用不超過1480元,這所中學最多可以購買多少個籃球?(提示:列不等式解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,EAD上一點,延長CE到點F,使∠FBC=DCE

(1)求證:∠D=F

(2)用直尺和圓規(guī)在AD上作出一點P,使BPC∽△CDP(保留作圖的痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小劉對本班同學的業(yè)余興趣愛好進行了一次調(diào)查,她根據(jù)采集到的數(shù)據(jù),繪制了下面的圖1和圖2.

請你根據(jù)圖中提供的信息,解答下列問題:

(1)在圖1中,將書畫部分的圖形補充完整;

(2)在圖2中,求出球類部分所對應的圓心角的度數(shù),并分別寫出愛好音樂”、“書畫”、“其它的人數(shù)占本班學生數(shù)的百分數(shù);

(3)觀察圖1和圖2,你能得出哪些結(jié)論(只要寫出一條結(jié)論).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,DC=8,現(xiàn)將四邊形BEGC沿折痕EG(GE分別在DC,AB邊上)折疊,其頂點B,C分別落在邊AD上和邊DC的上部,其對應點設為F,N點,且FNDCM

特例體驗:

(1)FD=AF時,FDM的周長是多少?

類比探究:

(2)FD≠AF≠0時,FDM的周長會發(fā)生變化嗎?請證明你的猜想.

拓展延伸:

(3)同樣在FD≠AF≠0的條件下,設AFx,被折起部分(即:四邊形FEGN)的面積為S,試用含x的代數(shù)式表示S,并問:當x為何值時,S=26?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市場將進貨價為40/件的商品按60/件售出,每星期可賣出300件.市場調(diào)查反映:如調(diào)整價格,每漲價1/件,每星期該商品要少賣出10件.

1)請寫出該商場每月賣出該商品所獲得的利潤y(元)與該商品每件漲價x(元)間的函數(shù)關系式;

2)每月該商場銷售該種商品獲利能否達到6300元?請說明理由;

3)請分析并回答每件售價在什么范圍內(nèi),該商場獲得的月利潤不低于6160元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.

(1)求拋物線的解析式;

(2)求點D的坐標;

(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案