函數(shù)數(shù)學公式的圖象與y軸的交點是________,與x軸的交點是________.

(0,-7)    (28,0)
分析:令x=0,即可得圖象與y軸的交點,令y=0,即可得與x軸的交點坐標.
解答:令x=0,解得:y=-7,
∴圖象與y軸的交點是(0,-7),
令y=0,解得:x=28,
∴圖象與x軸的交點是(28,0);
故填(0,-7)、(28,0).
點評:本題考查的是一次函數(shù)圖象上點的坐標特征,是基礎題型.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸相交于點C.連接AC,BC,A(-3,0),C(0,
3
),且當x=-4和x=2時二次函數(shù)的函數(shù)值y相等.
(1)求拋物線的解析式;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動.
①當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
②拋物線的對稱軸上是否存在點Q,使得以B、N、Q為頂點的三角形與△A0C相似?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
③當運動時間為t秒時,連接MN,將△BMN沿MN翻折,得到△PMN.并記△PMN與△AOC的重疊部分的面積為S.求S與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•贛州模擬)如圖1,已知二次函數(shù)y=ax2+bx+c(其中a<0,b>0,c>0)的圖象與y軸的交于點C,其頂點為A;直線CD∥x軸、且與拋物線的對稱軸AE交于點B,交拋物線于另一點D.
(1)試用含b的代數(shù)式表示
ABCD
的值;
(2)如圖2,連接AC與AD,我們把△ACD稱為拋物線的伴隨三角形.
①當△ACD為直角三角形時,求出此時b值;
②若△ACD的面積記為S,當拋物線的對稱軸為直線x=2時,請寫出伴隨三角形面積S與b的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,二次函數(shù)y=-
1
2
x2-(m+3)x+m2-12
的圖象與x軸相交于A(x1,0)、B(x2,0)兩點,且x1<0,x2>0,圖象與y軸交于點C,OB=2OA;
(1)求二次函數(shù)的解析式;
(2)在x軸上,點A的左側,求一點E,使△ECO與△CAO相似,并說明直線EC經過(1)中二次函數(shù)圖象的頂點D;
(3)過(2)中的點E的直線y=
1
4
x+b
與(1)中的拋物線相交于M、N兩點,分別過M、N作x軸的垂線,垂足為M′、N′,點P為線段MN上一點,點P的橫坐標為t,過點P作平行于y軸的直線交(1)中所求拋物線于點Q,是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出滿足條件的t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年湖南省婁底市高級中等學校招生考試數(shù)學 題型:044

已知:一元二次方程

(1)求證:不論k為何實數(shù)時,此方程總有兩個實數(shù)根;

(2)設k<0,當二次函數(shù)的圖象與x軸的兩個交點A、B間的距離為4時,求此二次函數(shù)的解析式;

(3)在(2)的條件下,若拋物線的頂點為C,過y軸上一點M(0,m)作y軸的垂線l,當m為何值時,直線l與△ABC的外接圓有公共點?

如圖,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一邊QP在BC邊上,E、F分別在AB、AC上,AD交EF于點H.

(1)求證:

(2)設EF=x,當x為何值時,矩形EFPQ的面積最大?并求出最大面積;

(3)當矩形EFPQ的面積最大時,該矩形EFPQ以每秒1個單位的速度沿射線DA勻速向上運動(當矩形的邊PQ到達A點時停止運動),設運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年湖北省鄂州市九年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,A點在原點的左則,B點的坐標為(30),與y軸交于C(0―3)點,點P是直線BC下方的拋物線上一動點。

求這個二次函數(shù)的表達式;

連結PO、PC在同一平面內POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由;

當點P運動到什么位置時,四邊形ABPC的面積最大,并求出此時P點的坐標和四邊形ABPC的最大面積.

 

查看答案和解析>>

同步練習冊答案