如圖,拋物線的頂點(diǎn)為D,與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,且OB =" 2OC=" 3.

(1)求a,b的值;
(2)將45°角的頂點(diǎn)P在線段OB上滑動(dòng)(不與點(diǎn)B重合),該角的一邊過(guò)點(diǎn)D,另一邊與BD交于點(diǎn)Q,設(shè)P(x,0),y2=DQ,試求出y2關(guān)于x的函數(shù)關(guān)系式;
(3)在同一平面直角坐標(biāo)系中,兩條直線x = m,x = m+分別與拋物線y1交于點(diǎn)E,G,與y2的函數(shù)圖象交于點(diǎn)F,H.問(wèn)點(diǎn)E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請(qǐng)說(shuō)明理由.
(1)由已知,OB=2OC=3
可得,拋物線y1=ax2-2ax+b經(jīng)過(guò)B(3,0),C(0,)兩點(diǎn),
,∴
∴拋物線的解析式為y1=-x2+x+.          ---------4分
(2)作DN⊥AB,垂足為N.(如下圖1)
y1= -x2+x+易得D(1,2), N(1,0),A(-1,0),B(3,0),
AB=4,DN=BN=2,DB=2,
ÐDBN=45°.根據(jù)勾股定理有BD 2-BN 2="PD" 2-PN 2
∴(2)2-22=PD2-(1-x)2-----j
又ÐMPQ=45°=ÐMBP
∴△MPQ ∽ △MBP,∴PD2=DQ´DB=y2´2------k.
由j、k得y2=x2-x+.∵0≤x<3,
y2x的函數(shù)關(guān)系式為y2=x2-x+=(0≤x≤3).--------4分
(自變量取值范圍沒(méi)寫(xiě),不扣分)


(3)假設(shè)E、F、H、G圍成四邊形的面積能為 (如圖2)
∵點(diǎn)E、G是拋物線y1= -x2+x+= 分別與直線x=m,x= m+的交點(diǎn)
∴點(diǎn)E、G坐標(biāo)為E(m,),G(m+).
同理,點(diǎn)F、H坐標(biāo)為F(m,),H(m+,).
∴EF=-[]=
GH=)-[]=
∵四邊形EFHG是平行四邊形或梯形,
∴S=+]×=
化簡(jiǎn)得
解得m=(都在0≤x≤3內(nèi))
所以,當(dāng)m=時(shí),E、F、H、G圍成四邊形的面積為.   --------4分解析:
通過(guò)B(3,0),C(0,)兩點(diǎn),求出拋物線的解析式,
(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根據(jù)勾股定理得jPD2-(1-x)2=4,又因?yàn)椤?i>MPQ ∽ △MBP,所以kPD2=DQ´DB=y2´2,由j、k得y2x的函數(shù)關(guān)系式
(3)假設(shè)E、F、H、G圍成四邊形的面積能為,通過(guò)y1求出E、G、F、H的坐標(biāo),求出EF、GH的長(zhǎng)度,
通過(guò)四邊形EFHG的面積求出m的值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線的頂點(diǎn)為P(1,0),一條直線與拋物線相交于A(2,1),B(-
12
,m
)兩精英家教網(wǎng)點(diǎn).
(1)求拋物線和直線AB的解析式;
(2)若M為線段AB上的動(dòng)點(diǎn),過(guò)M作MN∥y軸,交拋物線于點(diǎn)N,連接NP、AP,試探究四邊形MNPA能否為梯形?若能,求出此點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,拋物線的頂點(diǎn)為A(1,-4),且過(guò)點(diǎn)B(3,0).
(1)求該拋物線的解析式;
(2)將該拋物線向右平移幾個(gè)單位,可使平移后的拋物線經(jīng)過(guò)原點(diǎn)?并直接寫(xiě)出平移后拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河南)如圖,拋物線的頂點(diǎn)為P(-2,2),與y軸交于點(diǎn)A(0,3).若平移該拋物線使其頂點(diǎn)P沿直線移動(dòng)到點(diǎn)P′(2,-2),點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則拋物線上PA段掃過(guò)的區(qū)域(陰影部分)的面積為
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•峨眉山市二模)已知,如圖,拋物線的頂點(diǎn)為C(1,-2),直線y=kx+m與拋物線交于A、B兩點(diǎn),其中OA=3,B點(diǎn)在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過(guò)點(diǎn)P且垂直于x軸的直線與這條拋物線交于點(diǎn)E.
(1)求直線AB的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求點(diǎn)E坐標(biāo)(用含x的代數(shù)式表示);
(3)點(diǎn)D是直線AB與這條拋物線對(duì)稱(chēng)軸的交點(diǎn),是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄂爾多斯)如圖,拋物線的頂點(diǎn)為C(-1,-1),且經(jīng)過(guò)點(diǎn)A、點(diǎn)B和坐標(biāo)原點(diǎn)O,點(diǎn)B的橫坐標(biāo)為-3.
(1)求拋物線的解析式;
(2)若點(diǎn)D為拋物線上的一點(diǎn),點(diǎn)E為對(duì)稱(chēng)軸上的一點(diǎn),且以點(diǎn)A、O、D、E為
頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P是拋物線第一象限上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案