【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)將△ABC繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°后得△A1B1C1 , 畫(huà)出△A1B1C1并直接寫(xiě)出點(diǎn)C1的坐標(biāo)為多少?
(2)以原點(diǎn)O為位似中心,在第四象限畫(huà)一個(gè)△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.

【答案】解:(1)如圖,△A1B1C1為所作,點(diǎn)C1的坐標(biāo)為(2,3);
(2)如圖,△A2B2C2為所作.

故答案為(2,3).
【解析】(1)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫(huà)出點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)A1、B1、C1 , 從而得到△A1B1C1;
(2)利用關(guān)于原點(diǎn)中心對(duì)稱(chēng)的點(diǎn)的特征特征,把A、B、C點(diǎn)的橫縱坐標(biāo)都乘以﹣2得到A2、B2、C2的坐標(biāo),然后描點(diǎn)即可得到△A2B2C2
【考點(diǎn)精析】利用作圖-位似變換對(duì)題目進(jìn)行判斷即可得到答案,需要熟知對(duì)應(yīng)點(diǎn)到位似中心的距離比就是位似比,對(duì)應(yīng)線段的比等于位似比,位似比也有順序;已知圖形的位似圖形有兩個(gè),在位似中心的兩側(cè)各有一個(gè).位似中心,位似比是它的兩要素.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC= ,則圖中陰影部分的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】回答下列問(wèn)題:
(1)如圖所示的甲、乙兩個(gè)平面圖形能折什么幾何體?

(2)由多個(gè)平面圍成的幾何體叫做多面體.若一個(gè)多面體的面數(shù)為f,頂點(diǎn)個(gè)數(shù)為v,棱數(shù)為e,分別計(jì)算第(1)題中兩個(gè)多面體的f+v﹣e的值?你發(fā)現(xiàn)什么規(guī)律?
(3)應(yīng)用上述規(guī)律解決問(wèn)題:一個(gè)多面體的頂點(diǎn)數(shù)比面數(shù)大8,且有50條棱,求這個(gè)幾何體的面數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明在一塊平地上測(cè)山高,先在B處測(cè)得山頂A的仰角為30°,然后向山腳直行100米到達(dá)C處,再測(cè)得山頂A的仰角為45°,那么山高AD為 米(結(jié)果保留整數(shù),測(cè)角儀忽略不計(jì),≈1.414, , 1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華同學(xué)自制了一個(gè)簡(jiǎn)易的幻燈機(jī),其工作情況如圖所示,幻燈片與屏幕平行,光源到幻燈片的距離是30cm幻燈片到屏幕的距離是1.5m,幻燈片上小樹(shù)的高度是10cm,則屏幕上小樹(shù)的高度是( )

A.50cm
B.500cm
C.60 cm
D.600cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一張等腰三角形紙片,底邊長(zhǎng)18cm,底邊上的高長(zhǎng)18cm,現(xiàn)沿底邊依次向下往上裁剪寬度均為3cm的矩形紙條,已知剪得的紙條中有一張是正方形,則這張正方形紙條是( 。

A.第4張
B.第5張
C.第6張
D.第7張

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,CD=2,BD=1,則AD的長(zhǎng)是 ,AC的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖1,點(diǎn)C在線段AB上,若滿足AC2=BCAB,則稱(chēng)點(diǎn)C為線段AB的黃金分割點(diǎn).如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點(diǎn)D.
(1)求證:點(diǎn)D是線段AC的黃金分割點(diǎn);
(2)求出線段AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:AB是⊙O的弦,過(guò)點(diǎn)B作BC⊥AB交⊙O于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D,取AD的中點(diǎn)E,過(guò)點(diǎn)E作EF∥BC交DC的延長(zhǎng)線于點(diǎn)F,連接AF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
求證:

(1)FC=FG;
(2)AB2=BCBG.

查看答案和解析>>

同步練習(xí)冊(cè)答案