已知實數(shù)a、b、c均不為0,且a、b、c滿足
a+b
c
=
b+c
a
=
c+a
b
=k,則一次函數(shù)y=kx+k2的圖象一定經(jīng)過( 。
A、第一、二象限
B、第一、二、三象限
C、第一、二、四象限
D、以上說法都不正確
分析:此題要分a+b+c≠0和a+b+c=0兩種情況討論,然后求出k,就知道函數(shù)圖象經(jīng)過的象限.
解答:解:分兩種情況討論:
當(dāng)a+b+c≠0時,根據(jù)比例的等比性質(zhì),a+b=ck,b+c=ka,c+a=kb,
三式相加得:k=
2(a+b+c)
a+b+c
=2,此時直線是y=2x+4,過第一、二、三象限;
當(dāng)a+b+c=0時,即a+b=-c,則k=-1,此時直線是y=-x+1,直線過第一、二、四象限.
綜上所述,該直線必經(jīng)過第一、二象限.
故選A.
點評:注意此類題要分情況求k的值.能夠根據(jù)k,b的符號正確判斷直線所經(jīng)過的象限.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知實數(shù)a、b在數(shù)軸上的對應(yīng)點的位置如右圖所示,那么
a
+
-b
是一個( 。
A、非負(fù)數(shù)B、正數(shù)
C、負(fù)數(shù)D、以上答案均不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個實數(shù)根分別為x1,x2,則x1+x2=-
b
a
,x1x2=
c
a

解決下列問題:
已知:a,b,c均為非零實數(shù),且a>b>c,關(guān)于x的一元二次方程ax2+bx+c=0有兩個實數(shù)根,其中一根為2.
(1)填空:4a+2b+c
 
0,a
 
0,c
 
0;(填“>”,“<”或“=”)
(2)利用閱讀材料中的結(jié)論直接寫出方程ax2+bx+c=0的另一個實數(shù)根(用含a,c的代數(shù)式表示);
(3)若實數(shù)m使代數(shù)式am2+bm+c的值小于0,問:當(dāng)x=m+5時,代數(shù)式ax2+bx+c的值是否為正數(shù)?寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知實數(shù)a、b、c均不為0,且a、b、c滿足數(shù)學(xué)公式=數(shù)學(xué)公式=數(shù)學(xué)公式=k,則一次函數(shù)y=kx+k2的圖象一定經(jīng)過


  1. A.
    第一、二象限
  2. B.
    第一、二、三象限
  3. C.
    第一、二、四象限
  4. D.
    以上說法都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年江蘇省無錫市崇安區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

已知實數(shù)a、b、c均不為0,且a、b、c滿足===k,則一次函數(shù)y=kx+k2的圖象一定經(jīng)過( )
A.第一、二象限
B.第一、二、三象限
C.第一、二、四象限
D.以上說法都不正確

查看答案和解析>>

同步練習(xí)冊答案