【題目】某商販出售一批進價為l元的鑰匙扣,在銷售過程中發(fā)現(xiàn)鑰匙扣的日銷售單價x(元)與日銷售量y(個)之間有如下關(guān)系:
(1)根據(jù)表中數(shù)據(jù)在平面直角坐標系中,描出實數(shù)對(x,y)對應的點;
(2)猜想并確定y與x的關(guān)系式,并在直角坐標系中畫出x>0時的圖像;
(3)設(shè)銷售鑰匙扣的利潤為T元,試求出T與x之間的函數(shù)關(guān)系式:若商販在鑰匙扣售價不超過8元的前提下要獲得最大利潤,試求銷售價x和最大利潤T.
【答案】(1)見解析;(2),見解析;(3),,(元).
【解析】
(1)根據(jù)已知各點坐標進而在坐標系中描出即可;
(2)利用各點坐標乘積不變進而得出函數(shù)解析式,再畫圖象;
(3)利用利潤=銷量×(每件利潤),進而得出答案.
解:(1)如圖:
(2)因為各點坐標xy乘積不變,猜想y與x為形式的反比例函數(shù),
由題提供數(shù)據(jù)可知固定k值為24,
所以函數(shù)表達式為:,
連線如圖:
(3)利潤 = 銷量 ×(每件利潤),
利潤為T,銷量為y,由(2)知,
每件售價為1,則每件利潤為x-1,
所以,
當最大時,最小,而此時最大,
根據(jù)題意,鑰匙扣售價不超過8元,
所以時,(元).
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是由五個完全相同的小正方體組成的立體圖形,將圖①中的一個小正方體改變位置后如圖②.則三視圖發(fā)生改變的是( )
A.主視圖B.俯視圖
C.左視圖D.主視圖、俯視圖和左視圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,點E是邊AD中點,點F在邊CD上,且FE⊥BE,設(shè)BD與EF交于點G,則△DEG的面積是___
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△OAB的頂點坐標分別為O(0,0),A(2,4),B(4,0),分別將點A、B的橫坐標、縱坐標都乘以1.5,得相應的點A'、B'的坐標。
(1)畫出 OA'B':
(2)△OA'B'與△AOB______位似圖形:(填“是”或“不是”)
(3)若線段AB上有一點,按上述變換后對應的A'B'上點的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點,點A在點B的左邊,與y軸交于點C,點D是拋物線的頂點,且A(﹣6,0),D(﹣2,﹣8).
(1)求拋物線的解析式;
(2)點P是直線AC下方的拋物線上一動點,不與點A、C重合,求過點P作x軸的垂線交于AC于點E,求線段PE的最大值及P點坐標;
(3)在拋物線的對稱軸上足否存在點M,使得△ACM為直角三角形?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線經(jīng)過原點O及點A和點B.
(1)求拋物線的解析式;
(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點C,將直線沿y軸向下平移n個單位后得到直線l,若直線l經(jīng)過B點,與y軸交于點D,且與拋物線的對稱軸交于點E.若P是拋物線上一點,且PB=PE,求點P的坐標;
(3)如圖2,將拋物線向上平移9個單位得到新拋物線,直接寫出下列兩個問題的答案:
①直線至少向上平移多少個單位才能與新拋物線有交點?
②新拋物線上的動點Q到直線的最短距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE= ;
(2)如圖②,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠AOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O任意轉(zhuǎn)動,如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一拱橋的截面呈拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,拱橋與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m景觀燈.
(1)求拋物線的解析式;
(2)求兩盞景觀燈之間的水平距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com