如圖,已知△ABC,按如下步驟作圖:

①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;

②連接MN,分別交AB、AC于點(diǎn)D、O;

③過C作CE∥AB交MN于點(diǎn)E,連接AE、CD.

(1)求證:四邊形ADCE是菱形;

(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長為18時(shí),求四邊形ADCE的面積.

 

【答案】

(1)證明:由作法可知:直線DE是線段AC的垂直平分線,

 

 

 ∴AC⊥DE,即∠AOD=∠COE=90°,且AD=CD,AO=CO。

又∵CE∥AB,∴∠ADO =∠CEO。

∴△AOD≌△COE(AAS)!郞D=OE!嗨倪呅蜛DCE是菱形。

(2)解:當(dāng)∠ACB=90°時(shí),

         由(1)知AC⊥DE,∴OD∥BC。

∴△ADO∽△ABC!。

又∵BC=6,∴OD=3。

又∵△ADC的周長為18,∴AD+AO=9, 即AD=9﹣AO。

,解得AO=4

【解析】作圖(復(fù)雜作圖),線段垂直平分線的性質(zhì),全等三角形的判定和性質(zhì),菱形的判定和性質(zhì),平行的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理。

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形。

(2)利用當(dāng)∠ACB=90°時(shí),OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長,即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的三個(gè)頂點(diǎn)分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請(qǐng)?jiān)趫D中作出△ABC關(guān)于直線x=-1的軸對(duì)稱圖形△DEF(A、B、C的對(duì)應(yīng)點(diǎn)分別是D、E、F),并直接寫出D、E、F的坐標(biāo);
(2)求四邊形ABED的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,已知△ABC和△CDE均為等邊三角形,且點(diǎn)B、C、D在同一條直線上,連接AD、BE,交CE和AC分別于G、H點(diǎn),連接GH.
(1)請(qǐng)說出AD=BE的理由;
(2)試說出△BCH≌△ACG的理由;
(3)試猜想:△CGH是什么特殊的三角形,并加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC,∠ACB=90°,AC=BC,點(diǎn)E、F在AB上,∠ECF=45°.
(1)求證:△ACF∽△BEC;
(2)設(shè)△ABC的面積為S,求證:AF•BE=2S;
(3)試判斷以線段AE、EF、FB為邊的三角形的形狀并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、(1)已知線段a,h,用直尺和圓規(guī)作等腰三角形ABC,底邊BC=a,BC邊上的高為h(要求尺規(guī)作圖,不寫作法和證明)
(2)如圖,已知△ABC,請(qǐng)作出△ABC關(guān)于X軸對(duì)稱的圖形.并寫出A、B、C關(guān)于X軸對(duì)稱的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知△ABC是銳角三角形,且∠A=50°,高BE、CF相交于點(diǎn)O,求∠BOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案