如圖,已知△ABC,按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;
②連接MN,分別交AB、AC于點(diǎn)D、O;
③過C作CE∥AB交MN于點(diǎn)E,連接AE、CD.
(1)求證:四邊形ADCE是菱形;
(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長為18時(shí),求四邊形ADCE的面積.
(1)證明:由作法可知:直線DE是線段AC的垂直平分線,
∴AC⊥DE,即∠AOD=∠COE=90°,且AD=CD,AO=CO。
又∵CE∥AB,∴∠ADO =∠CEO。
∴△AOD≌△COE(AAS)!郞D=OE!嗨倪呅蜛DCE是菱形。
(2)解:當(dāng)∠ACB=90°時(shí),
由(1)知AC⊥DE,∴OD∥BC。
∴△ADO∽△ABC!。
又∵BC=6,∴OD=3。
又∵△ADC的周長為18,∴AD+AO=9, 即AD=9﹣AO。
∴,解得AO=4
∴。
【解析】作圖(復(fù)雜作圖),線段垂直平分線的性質(zhì),全等三角形的判定和性質(zhì),菱形的判定和性質(zhì),平行的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理。
(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形。
(2)利用當(dāng)∠ACB=90°時(shí),OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長,即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com