如圖,在平面直角坐標(biāo)系中,?ABCO的頂點(diǎn)O在原點(diǎn),點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)C在第一象限.
(1)直接寫(xiě)出點(diǎn)C的坐標(biāo);
(2)將?ABCO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使OC落在y軸的正半軸上,如圖②,得□DEFG(點(diǎn)D與點(diǎn)O重合).FG與邊AB、x軸分別交于點(diǎn)Q、點(diǎn)P.設(shè)此時(shí)旋轉(zhuǎn)前后兩個(gè)平行四邊形重疊部分的面積為S0,求S0的值;
(3)若將(2)中得到的?DEFG沿x軸正方向平移,在移動(dòng)的過(guò)程中,設(shè)動(dòng)點(diǎn)D的坐標(biāo)為(t,0),?DEFG與?ABCO重疊部分的面積為S.寫(xiě)出S與t(0<t≤2)的函數(shù)關(guān)系式.(直接寫(xiě)出結(jié)果)

解:(1)C(2,2);

(2)∵A(-2,0),B(0,2)
∴OA=OB=2
∴∠BAO=∠ABO=45°
∵?EFGD由?ABCO旋轉(zhuǎn)而成
∴DG=OA=2,∠G=∠BAO=45°
∵?EFGD
∴FG∥DE
∴∠FPA=∠EDA=90°
在Rt△POG中,OP=OG•sin45°=
∵∠AQP=90°-∠BAO=45°
∴PQ=AP=OA-OP=2-
S0=(PQ+OB)•OP=(2-+2)•=2-1.

(3)
當(dāng)?DEFG運(yùn)動(dòng)到點(diǎn)F在AB上時(shí),如圖①,t=2-2
①當(dāng)0<t≤2-2時(shí),如圖②,S=-t2+t+2-1;
②當(dāng)2-2<t≤時(shí),如圖③,S=-t2+4-3;
③當(dāng)<t≤2時(shí),如圖④,S=-t+4-2.
分析:(1)由于四邊形BCOA是平行四邊形,將B點(diǎn)坐標(biāo)向右平移2個(gè)單位即可得出C點(diǎn)坐標(biāo).
(2)重合部分是個(gè)直角梯形,關(guān)鍵是求出PQ和OP的值,根據(jù)OA,OB的長(zhǎng)可得出∠BAO=∠G=45°,根據(jù)旋轉(zhuǎn)的性質(zhì)可知:OG=OA,因此可在等腰直角三角形OPG中求出OP的長(zhǎng),進(jìn)而可求出AP、PQ的長(zhǎng),然后根據(jù)梯形的面積公式即可求出S0的值.
(3)本題要找出幾個(gè)關(guān)鍵點(diǎn).
當(dāng)F在直線AB上時(shí),(2)中求得OP=,那么FP=FG-PG=,因此當(dāng)F在AB上時(shí),AP=PF=,OD=-(2-)=2-2.
當(dāng)F在y軸上時(shí),OD=
因此本題可分三種情況:
①當(dāng)FE在AB左側(cè)時(shí),即當(dāng)0<t≤2-2時(shí),如果延長(zhǎng)FB交EN于S,那么重合部分是兩個(gè)直角梯形.
②當(dāng)FE在AB右側(cè),但在y軸左側(cè)時(shí),重合部分是個(gè)多邊形,設(shè)EF與y軸的交點(diǎn)為S,可分成y軸左側(cè)的直角梯形POSF和右側(cè)的平行四邊形ONES-三角形EKM的面積來(lái)求.
③當(dāng)FE在y軸右側(cè)時(shí),如果設(shè)ED與OC的交點(diǎn)為R的話,可用平行四邊形HREF的面積-三角形EKM的面積來(lái)求得.
點(diǎn)評(píng):本題主要考查了圖形的旋轉(zhuǎn)變換、圖形面積的求法、二次函數(shù)的應(yīng)用等知識(shí)點(diǎn).難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案