身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹(shù)上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點(diǎn)B處,風(fēng)箏掛在建筑物上方的樹(shù)枝點(diǎn)G處(點(diǎn)G在FE的延長(zhǎng)線上).經(jīng)測(cè)量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點(diǎn)G與建筑物頂點(diǎn)D及風(fēng)箏線在手中的點(diǎn)A在同一條直線上,點(diǎn)A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.
(1)求風(fēng)箏距地面的高度GF;
(2)在建筑物后面有長(zhǎng)5米的梯子MN,梯腳M在距墻3米處固定擺放,通過(guò)計(jì)算說(shuō)明:若兵兵充分利用梯子和一根米長(zhǎng)的竹竿能否觸到掛在樹(shù)上的風(fēng)箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)10.4(米)  (2)能觸到掛在樹(shù)上的風(fēng)箏

試題分析:(1)過(guò)A作AP⊥GF于點(diǎn)P.在Rt△PAG中利用三角函數(shù)求得GP的長(zhǎng),從而求得GF的長(zhǎng)。
(2)在Rt△MNF中,利用勾股定理求得NF的長(zhǎng)度,NF的長(zhǎng)加上身高再加上竹竿長(zhǎng),與GF比較大小即可!
解:(1)過(guò)A作AP⊥GF于點(diǎn)P,

則AP=BF=12,AB=PF=1.4,∠GAP=37°,
在Rt△PAG中,
∴GP=AP•tan37°≈12×0.75=9(米)。
∴GF=9+1.4≈10.4(米)。
(2)由題意可知MN=5,MF=3,
∴在直角△MNF中,。
∵10.4﹣5﹣1.65=3.75<4,∴能觸到掛在樹(shù)上的風(fēng)箏。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,為了測(cè)量山頂鐵塔AE的高,小明在27m高的樓CD底部D測(cè)得塔頂A的仰角為45°,在樓頂C測(cè)得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2013年四川綿陽(yáng)3分)如圖,四邊形ABCD是菱形,對(duì)角線AC=8cm,BD=6cm,DH⊥AB于點(diǎn)H,且DH與AC交于G,則GH=【   】
A.cmB.cmC.cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:計(jì)算題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

請(qǐng)運(yùn)用你喜歡的方法求tan75°=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ODBC中,OC=1,OA=OB,則數(shù)軸上點(diǎn)A表示的數(shù)是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時(shí)間到B處.在B處小亮觀測(cè)到媽媽所在的P處在北偏西37°的方向上,這時(shí)小亮與媽媽相距多少米(精確到1米)?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某景區(qū)為方便游客參觀,在每個(gè)景點(diǎn)均設(shè)置兩條通道,即樓梯和無(wú)障礙通道.如圖,已知在某景點(diǎn)P處,供游客上下的樓梯傾斜角為30°(即∠PBA=30°),長(zhǎng)度為4m(即PB=4m),無(wú)障礙通道PA的傾斜角為15°(即∠PAB=15°).求無(wú)障礙通道的長(zhǎng)度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin15°≈0.21,cos15°≈0.98)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,為估算某河的寬度,在河對(duì)岸邊選定一個(gè)目標(biāo)點(diǎn)A,在近岸取點(diǎn)B,C,D,使得AB⊥BC,CD⊥BC,點(diǎn)E在BC上,并且點(diǎn)A,E,D在同一條直線上。若測(cè)得BE=20m,EC=10m,CD=20m,則河的寬度AB等于
A.60mB.40mC.30mD.20m

查看答案和解析>>

同步練習(xí)冊(cè)答案