【題目】某校園文學(xué)社為了解本校學(xué)生對本社一種報(bào)紙四個(gè)版面的喜歡情況,隨機(jī)抽查部分學(xué)生做了一次問卷調(diào)查,要求學(xué)生選出自己最喜歡的一個(gè)版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下:

請根據(jù)圖中信息,解答下列問題:

該調(diào)查的樣本容量為______,______,“第一版對應(yīng)扇形的圓心角為______;

請你補(bǔ)全條形統(tǒng)計(jì)圖;

若該校有1000名學(xué)生,請你估計(jì)全校學(xué)生中最喜歡第三版的人數(shù).

【答案】(1)50;36;108;(2)補(bǔ)全條形統(tǒng)計(jì)圖見解析;(3)全校學(xué)生中最喜歡第三版的人數(shù)約為240人.

【解析】

(1)設(shè)樣本容量為x.由題意=10%,求出x即可解決問題;

(2)求出“第三版”的人數(shù)為50-15-5-18=12,畫出條形圖即可;

(3)用樣本估計(jì)總體的思想解決問題即可.

設(shè)樣本容量為x.

由題意,

解得,

,

第一版對應(yīng)扇形的圓心角為

故答案分別為50,36,108.

第三版的人數(shù)為

條形圖如圖所示,

該校有1000名學(xué)生,估計(jì)全校學(xué)生中最喜歡第三版的人數(shù)約為人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠α、∠β分別是與∠BAD、∠BCD相鄰的補(bǔ)角,且∠B+CDA=140°,則∠α+β= ).

A.260°B.150°C.135°D.140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016新疆)如圖,ABCD中,AB=2,AD=1,ADC=60°,將ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D處,折痕交CD邊于點(diǎn)E

(1)求證:四邊形BCED是菱形;

(2)若點(diǎn)P時(shí)直線l上的一個(gè)動點(diǎn),請計(jì)算PD′+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:

閱讀時(shí)間

(小時(shí))

2

2.5

3

3.5

4

學(xué)生人數(shù)(名)

1

2

8

6

3

則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說法正確的是( 。

A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ABC和∠ACB的平分線相交于點(diǎn)G,過點(diǎn)GEFBCABE,ACF,過點(diǎn)GGDACD,下列三個(gè)結(jié)論:① EF=BE+CF;②∠BGC=90°+A;③點(diǎn)GABC各邊的距離相等;其中正確的結(jié)論有_________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三角形ABC的邊長為3+.

(1)如圖,正方形EFPN的頂點(diǎn)E,F(xiàn)在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);

(2)求(1)中作出的正方形E′F′P′N′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖,在△ABC中,∠ACB90°,CDAB于點(diǎn)D,若∠B30°,則∠ACD的度數(shù)是   度;

拓展:如圖,∠MCN90°,射線CP在∠MCN的內(nèi)部,點(diǎn)AB分別在CM、CN上,分別過點(diǎn)ABADCP、BECP,垂足分別為D、E,若∠CBE70°,求∠CAD的度數(shù);

應(yīng)用:如圖,點(diǎn)A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內(nèi)部,點(diǎn)DE在射線CP上,連接ADBE,若∠ADP=∠BEP60°,則∠CAD+CBE+ACB   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A-C-B-A運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒(t0).

1)若點(diǎn)PAC上,且滿足PA=PB時(shí),求出此時(shí)t的值;

2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值;

3)在運(yùn)動過程中,直接寫出當(dāng)t為何值時(shí),△BCP為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(diǎn)(不與點(diǎn)AE重合),在AE同側(cè)分別作正△ABC和正△CDE,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ④DE=DP;⑤∠AOB=60°

恒成立的結(jié)論有 .(把你認(rèn)為正確的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案