(2013•赤峰)如圖,矩形ABCD中,E是BC的中點(diǎn),矩形ABCD的周長是20cm,AE=5cm,則AB的長為
4
4
cm.
分析:設(shè)AB=x,則可得BC=10-x,BE=
1
2
BC=
10-x
2
,在Rt△ABE中,利用勾股定理可得出x的值,即求出了AB的長.
解答:解:設(shè)AB=x,則可得BC=10-x,
∵E是BC的中點(diǎn),
∴BE=
1
2
BC=
10-x
2
,
在Rt△ABE中,AB2+BE2=AE2,即x2+(
10-x
2
2=52,
解得:x=4.
即AB的長為4cm.
故答案為:4.
點(diǎn)評:本題考查了矩形的性質(zhì)及勾股定理的知識,解答本題的關(guān)鍵是表示出AB、BE的長度,利用勾股定理建立方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,4×4的方格中每個(gè)小正方形的邊長都是1,則S四邊形ABCD與S四邊形ECDF的大小關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖所示,幾何體的俯視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,ABCD是平行四邊形,AB是⊙O的直徑,點(diǎn)D在⊙O上AD=OA=1,則圖中陰影部分的面積為(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在平面直角坐標(biāo)系中,⊙O的半徑為1,∠BOA=45°,則過A點(diǎn)的雙曲線解析式是
y=
1
2x
y=
1
2x

查看答案和解析>>

同步練習(xí)冊答案