【題目】如圖是一個轉(zhuǎn)盤.轉(zhuǎn)盤分成8個相同的圖形,顏色分為紅、綠、黃三種.指針的位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其茲有停止,其中的某個扇形會恰好停在指針?biāo)傅奈恢?/span>(指針指向兩個圖形的交線時,當(dāng)作指向右邊的圖形).求下列事件的概率:
(1)指針指向紅色;
(2)指針指向黃色或綠色。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°.
(1)用尺規(guī)作圖作AB邊上的垂直平分線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);
(2)在(1)條件下,連結(jié)BD,當(dāng)∠A=32°時,求∠CBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀對人成長的影響是巨大的,一本好書往往能改變?nèi)说囊簧鐖D是某校三個年級學(xué)生人數(shù)分布的扇形統(tǒng)計圖,其中八年級人數(shù)為408人,下表是該校學(xué)生閱讀課外書籍情況統(tǒng)計表.根據(jù)圖表中的信息,可知該校學(xué)生平均每人閱讀課外書________本.
圖書種類 | 頻數(shù) | 頻率 |
科普知識 | 840 | B |
名人傳記 | 816 | 0.34 |
漫畫叢記 | A | 0.25 |
其他 | 144 | 0.06 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建立模型:
如圖1,已知△ABC,AC=BC,∠C=90°,頂點C在直線l上.
操作:
過點A作AD⊥l于點D,過點B作BE⊥l于點E.求證:△CAD≌△BCE.
模型應(yīng)用:
(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達式.
(2)如圖3,在直角坐標(biāo)系中,點B(8,6),作BA⊥y軸于點A,作BC⊥x軸于點C,P是線段BC上的一個動點,點Q(a,2a﹣6)位于第一象限內(nèi).問點A、P、Q能否構(gòu)成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,每個小方格的邊長均為1個長度單位,三角形ABC的三個頂點和點P都在小方格的頂點上.要求:①將三角形ABC平移,使點P落在平移后的三角形內(nèi)部;②平移后的三角形的頂點在方格的頂點上.請你在圖甲和圖乙中分別畫出符合要求的一個示意圖,并寫出平移的方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1= A1A2=1.以OA2為直角邊作第二個等腰直角三角形OA2A3,以OA3為直角邊作第三個等腰直角三角形OA3A4……依次規(guī)律得到等腰直角三角形OA2015A2016,則點A2015的坐標(biāo)為 __.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式
(x﹣1)(x+1)=x2﹣1
(x﹣1)(x2+x+1)=x3﹣1
(x﹣1)(x3+x2+x+1)=x4﹣1
(1)根據(jù)以上規(guī)律,則(x﹣1)(x6+x5+x4+x3+x2+x+1)= ;
(2)你能否由此歸納出一般規(guī)律(x﹣1)(xn+xn﹣1+……+x+1)= ;
(3)根據(jù)以上規(guī)律求32018+32017+32016+…32+3+1的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC 平分∠BAD,過 C 點作 CE⊥AB 于 E,并且 2AE=AB+AD,則下列結(jié)論:
①AB=AD+2BE;②∠DAB+∠DCB=180°;③CD=CB;④S△ABC=S△ACD+S△BCE,其中不正確的結(jié)論個數(shù)有( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1和∠2互為補角,∠A=∠D.求證:AB∥CD.
證明:∵∠1與∠CGD是對頂角,
∴∠1=∠CGD(______).
又∠1和∠2互為補角(已知),
∴∠CGD和∠2互為補角,
∴AE∥FD(_________),
∴∠A=∠BFD(_______).
∵∠A=∠D(已知),
∴∠BFD=∠D(_______),
AB∥CD(______).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com