如圖,已知為等腰三角形紙片的底邊, .將此三角形紙片沿剪開(kāi),得到兩個(gè)三角形,若把這兩個(gè)三角形拼成一個(gè)平面四邊形,則能拼出中心對(duì)稱(chēng)圖形 個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
底邊 |
腰 |
BC |
AB |
1 |
2 |
| ||
2 |
3 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A. | B.1 | C. | D.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011屆北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
(1)sad 的值為( ▼ )
A. | B.1 | C. | D.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
(1)sad 的值為( ▼ )
A. B. 1 C. D. 2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是 ▼ .
(3)已知,其中為銳角,試求sad的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知在等腰△ABC中,∠A=∠B=30°,過(guò)點(diǎn)C作CD⊥ AC交AB于點(diǎn)D.
(1)尺規(guī)作圖:過(guò)A,D,C三點(diǎn)作⊙O(只要求作出圖形, 保留痕跡,不要求寫(xiě)作法);
(2)求證:BC是過(guò)A,D,C三點(diǎn)的圓的切線;
(3)若過(guò)A,D,C三點(diǎn)的圓的半徑為,則線段BC上是否存在一點(diǎn)P,使得以P,D,B為頂點(diǎn)的三角
形與△BCO相似.若存在,求出DP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com