【題目】把邊長為3的正方形ABCD繞點A順時針旋轉45°得到正方形AB′C′D′,邊BC與D′C′交于點O,則四邊形ABOD′的周長是(
A.
B.6
C.
D.

【答案】A
【解析】解:連接BC′,
∵旋轉角∠BAB′=45°,∠BAD′=45°,
∴B在對角線AC′上,
∵B′C′=AB′=3,
在Rt△AB′C′中,AC′= =3 ,
∴BC′=3 ﹣3,
在等腰Rt△OBC′中,OB=BC′=3 ﹣3,
在直角三角形OBC′中,OC′= (3 ﹣3)=6﹣3 ,
∴OD′=3﹣OC′=3 ﹣3,
∴四邊形ABOD′的周長是:2AD′+OB+OD′=6+3 ﹣3+3 ﹣3=6
故選:A.
由邊長為3的正方形ABCD繞點A順時針旋轉45°得到正方形AB′C′D′,利用勾股定理的知識求出BC′的長,再根據(jù)等腰直角三角形的性質(zhì),勾股定理可求BO,OD′,從而可求四邊形ABOD′的周長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中學生騎電動車上學的現(xiàn)象越來越受到社會的關注.為此某媒體記者小李隨機調(diào)查了城區(qū)若干名中學生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:反對;C:贊成)并將調(diào)査結果繪制成圖①和圖②的統(tǒng)計圖(不完整)請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)査中.共調(diào)査了名中學生家長;
(2)將圖①補充完整;
(3)根據(jù)抽樣調(diào)查結果.請你估計我市城區(qū)80000名中學生家長中有多少名家長持反對態(tài)度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,邊長為2的正方形ABCD中,E是BA延長線上一點,且AE=AB,點P從點D出發(fā),以每秒1個單位長度沿D→CB向終點B運動,直線EP交AD于點F,過點F作直線FG⊥DE于點G,交AB于點R.

(1)求證:AF=AR;
(2)設點P運動的時間為t秒,求當選t為何值時,四邊形PRBC是矩形?
(3)如圖2,連接PB,請直線寫出使△PRB是等腰三角形時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點,線段BE的垂直平分線交邊BC于點D.設BD=x,tan∠ACB=y,則( )

A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰直角△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓⊙O的直徑

(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校初三(1)班部分同學接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動,收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題.
(1)初三(1)班接受調(diào)查的同學共有多少名;
(2)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中的“體育活動C”所對應的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學中有三名男生和兩名女生;老師想從5名同學中任選兩名同學進行交流,直接寫出選取的兩名同學都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD是BC邊上的中線,以AD為直徑作⊙O,連接BO并延長至點E,使得OE=OB,交⊙O于點F,連接AE,CE.
(1)求證:AE是⊙O的切線;
(2)求證:四邊形ADCE是矩形;
(3)若BD= AD=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小梅家的陽臺上放置了一個曬衣架如圖1,圖2是曬衣架的側面示意圖,A,B兩點立于地面,將曬衣架穩(wěn)固張開,測得張角∠AOB=62°,立桿OA=OB=140cm,小梅的連衣裙穿在衣架后的總長度為122cm,問將這件連衣裙垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由(參考數(shù)據(jù):sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)

查看答案和解析>>

同步練習冊答案