【題目】如圖,已知等腰△ABC頂角∠A=36°.
(1)尺規(guī)作圖:在AC上作一點(diǎn)D,使AD=BD;(保留作圖痕跡,不必寫作法和證明)
(2)求證:△BCD是等腰三角形.
【答案】(1)見解析;(2)△BCD是等腰三角形
【解析】
(1)根據(jù)垂直平分線的尺規(guī)作圖方法,作AB的垂直平分線交AC于點(diǎn)D,點(diǎn)D即為所求.
(2)已知等腰△ABC頂角∠A=36°,,再證明∠BDC=72°,即可證明△BCD是等腰三角形.
(1)如圖1,作AB的垂直平分線,分別以點(diǎn)A、B為圓心,以大于為半徑在AB上方畫弧,在AB上方兩圓弧交點(diǎn)為點(diǎn)M,分別以點(diǎn)A、B為圓心以大于為半徑在AB下方畫弧,在AB下方兩圓弧交點(diǎn)為點(diǎn)N.過點(diǎn)M、N作直線MN,交AC于點(diǎn)D,點(diǎn)D即為所求.
(2)∵在等腰△ABC頂角∠A=36°
∴
∵AD=BD
∴∠ABD=∠A=36°
則∠DBC=36°
在△BCD中∠ACB=72°
∠DBC=36°
∠BDC=72°=∠ACB
∴△BCD是等腰三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)是(a,0)(b,0),a,b滿足方程組,C為y軸正半軸上一點(diǎn),且S△ABC=6.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)是否存在點(diǎn)P(t,t),使S△PAB=S△ABC?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)C沿y軸負(fù)半軸方向以每秒1個(gè)單位長(zhǎng)度平移至點(diǎn)D,當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),四邊形ABCD的面積S為15個(gè)平方單位?求出此時(shí)點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“構(gòu)造圖形解題”,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:
實(shí)例一:1876年,美國總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由
S四邊形ABCD=S△ABC+S△ADE+S△ABE得,化簡(jiǎn)得:
實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程的圖解法是:
畫Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜邊AB上截取BD=,則AD的長(zhǎng)就是該方程的一個(gè)正根(如實(shí)例二圖)
請(qǐng)根據(jù)以上閱讀材料回答下面的問題:
(1)如圖1,請(qǐng)利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是 ,乙圖要證明的數(shù)學(xué)公式是
(2)如圖2,若2和-8是關(guān)于x的方程x2+6x=16的兩個(gè)根,按照實(shí)例二的方式構(gòu)造Rt△ABC,連接CD,求CD的長(zhǎng);
(3)若x,y,z都為正數(shù),且x2+y2=z2,請(qǐng)用構(gòu)造圖形的方法求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)在邊上,,.
(1)求證:;
(2)延長(zhǎng)至點(diǎn),使,連接,.判斷線段,的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的角平分線,CE是△ABC的高,AD與CE相交于點(diǎn)P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年10月,某市高質(zhì)量通過全國文明城市測(cè)評(píng),該成績(jī)的取得得益于領(lǐng)導(dǎo)高度重視(A)、整改措施有效(B)、市民積極參與(C)、市民文明素質(zhì)(D).某數(shù)學(xué)興趣小組隨機(jī)走訪了部分市民,對(duì)這四項(xiàng)認(rèn)可度進(jìn)行調(diào)查(只選填最認(rèn)可的一項(xiàng)),并將調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)請(qǐng)補(bǔ)全D項(xiàng)的條形圖;
(2)已知B、C兩項(xiàng)條形圖的高度之比為3:5.
①選B、C兩項(xiàng)的人數(shù)各為多少個(gè)?
②求α的度數(shù),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在面積為3的△ABC中,AB=3,∠BAC=45°,點(diǎn)D是BC邊上一點(diǎn).
(1)若AD是BC邊上的中線,求AD的長(zhǎng);
(2)點(diǎn)D關(guān)于直線AB和AC的對(duì)稱點(diǎn)分別為點(diǎn)M、N,求AN的長(zhǎng)度的最小值;
(3)若P是△ABC內(nèi)的一點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( )
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=(<600),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE、BE、DF
(1)求證:BE=CD
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com